
U)
oo M

I N M c
I r- %-0

N U r-o
z - c(
z = v.

0
o

* U

u0 U

H

Etn)

E: 4-t

0 U

0)

M M
a v

PA W4 Mr

CN4

I,-Ir

v-

z:

,_

Reliability Techniques for Computer

Executive Programs

Summary Report

NAS8-2666-9

C90 _ I 3736

Information Research Associates

2200 San Antonio

Austin, Texas 78705

May 17, 1972

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 22151

v)
I Q

CD

, z
11 M:

J-4E-4

H

coa

H

I

d

1. Introduction

The study of techniques for increasing the stability and reliability

of computer programs is still in its infancy. This report deals particu-

larly with those techniques especially adopted for use on executive and

supervisory systems. This summary report is in three sections, Program

Structure, Program Validation and Redundancy Techniques: Roll-Back and

Recovery. Each report section corresponds fairly closely to the section

in the scope of work specification.

2. Program Structure

Contemporary program segmentation as manifested by general explicit

control structure, phase segmented code, page organized programs, parallel

fragmented tasks, and rollback structured routines are assessed for

reliability characteristics. All structures enhance the program's reliability

by ordering the code bulk into smaller interacting components and defining

the interface characteristics. Segmentation criteria provide basic infor-

mation for the confirmation and validation activities.

The explicit and phase structures are natural outgrowths of the design

procedure requiring minimal achievement cost. Page, parallel, and rollback

structures require substantial processing investments to obtain the best

partitioning; their reliability impacts are more applicable to later phases

of check-out when the code becomes fairly stationary.

The page and rollback structures demonstrate inherent hardware failure

recovery mechanisms. Parallel structure allows for graceful degradation in

the hardware environment.

To improve confidence and reduce validation lead time, several actions

may be taken. Implementation primitives (e.g. hardware microprogrammed or

software interpretive procedures) can be designed for diagnostic goals to

exercise and validate new programs. Streamlined primitives for application

. . .~~~~~~~~~~~~~~~~~~~~~~~~~~~"

efficiency would be substituted without modifying the program code.

An automated system is desirable and feasible to assist in the checking

(both dynamic and static) of new programs. Emphasis would be placed on

interface consistency checking among cooperating sections and automation of

tedious debug procedures to speed programmer analysis of operational results.

3. Program Validation

Five techniques for validation of programs are discussed. The effect-

iveness of each depends to a marked extent on the modularization techniques

defined in the allowed program structure.

3.1 Automatic validation of modules through rigorous proofs of

correctness of the programmed representation of the algorithms

(see Appendix A).

3.2 Automatic validation by exhaustive or selective analysis of all

flowpaths through selected modules.

3.3 Analysis of validity of data bases used by the modules. This

can be accomplished by examination of explicitly transferred

parameters and by automatic analysis of access and sequencing

mechanisms for global common data bases (see Appendix B).

3.4 Rigorous modularization allows the use of mixed execution-

simulation testing. That is, program modules may be replaced

in the testing phase by simulation of their functions. This

simulation may include such features as generation of limiting

test cases for calling and called modules and extensive validity

checking for transmitted data. Such simulation conveniently

allows total environmental testing of only partially coded total

programs through the simulation and use of data structures which

are not yet implemented.

3.5 A further possibility whose convenience is enhanced by

rigorous "top down" modularization is mixed compilation-execution

and interpretation of source code.

Economic means of construction of an integrated validation package including

all of these components are discussed.

4. Redundancy Techniques: Roll-Back and Recovery

Reliability is an important aspect of any system. On-line diagnosis,

parity check coding, triple modular redundancy and other methods have been

used to improve the reliability of computing systems. In this paper another

aspect of reliable computing systems is explored. The problem is that of

recovering error-free information when an error is detected at some stage

in the processing of a program.

If an error or fault is detected while a program is being processed

and if it cannot be corrected immediately, it may be necessary to run the

entire program again. The time spent in rerunning the program may be sub-

stantial and in some real time applications critical. Recovery time can be

reduced by saving states of the program (all in the information stored in

registers, primary and secondary storage etc.) at intervals, as the processing

continues. If an error is detected program is restarted from its most

recently saved state. However, a price is paid in saving a state in the

form of time spent storing all the relevant information in secondary storage.

Hence it is expensive to save the state of the program too often. Not saving

any state of the program may cause an unacceptable large recovery time. The

problem that we solve is: Determine the optimum points at which the state of

the program should be stored to recover after any malfunction.

Reliability Techniques for Computer

Executive Programs

Final Report

NAS8-26669

Information Research Associates

2200 San Antonio

Austin, Texas 78705.

May 17, 1972

TABLE OF CONTENTS

I. Program Structure

II. Program Validation

Appendix A. A Program to Aid in Proving Program Correctness

Appendix B. Analyzing Sequences of Operations Performed by Programs

III. Redundancy Techniques: Roll-Back and Recovery

I. PROGRAM STRUCTURE

Program segmentation is the process of classifying general program

elements into collectively equivalent component categories. Properties

depend upon the decomposition criteria used. For example, most program

parts are naturally segmented into data and instructions (except for self-

modifying code). Data may be hierarchily refined into files, records,

words, and bits of information when this structure is desirable for exemplifying

or coding the program. Similarly, instructions may be functionally grouped

into nested or cascaded routines, specifying their interaction and

cooperation in the software system.

In this section we will be primarily interested in exposing segmentation

characteristics in program instructions and data. The programs may be

fragmented for operational clarity, debugging assistance, validation and

evaluation probe insertion, more amenable hardware operation, or recovery

from transient faults. Since many considerations aside from reliability

influence the final segmentation selected, it appears prudent to examine

the characteristics of some segmentation schemes and observe how they

enhance or mitigate diagnostic efforts.

The program graph.

For examination and description, it is often convenient to represent

the program as a directed graph. In this abstract representation, a collection

of nodes are interconnected by directed edges. The relationship between the

program and its graph may be manifested in several ways depending upon the

analysis intent. For example, nodes in the graph may correspond to clusters

of instructions and edges describe the sequence of control among these

actions (e.g. a flowchart). Alternatively, the nodes may represent instruction

-2-

sequences and the edges associated with data linking the operations together.

Since the first interpretation is more widespread, we will assume this form

here.

Graphical representation allows considerable flexibility for program

analysis. For example, we may choose to group several nodes and their

interconnecting edges together and attribute a processing property to this

subgraph. After making desirable groupings in the original graph, we can

construct a new graph consisting of nodes corresponding to previous subgraphs

and edges connecting the subgraphs. By condensation of the program graph,

we can illustrate the process in any level of detail desired.

In some applications of segmentation, it will be desirable to produce

modified graphs that are loop free. This acyclic graphical representation

insures that once a node's processing is complete, the system never reenters

this node. To perform.the reduction, loops in the original graph are coalesced

to nodes. If looping is complex or there are nested loops, it may be desirable

to have several intermediate levels in the description between the original

graph and its acyclic reduction. If this coalesce oversimplifies the struc-

ture, it may be necessary to remove some feedback edges (i.e. those causing

looping) to obtain a cycle free graph. In general, the minimum number of

edges is removed.

It is obvious that the coagulation of nodes segments the program into

parts. Grouping nodes of the original program graph nodes defines segment

members or program tasks. Since loops typically indicate itterative proce-

dures or set operations, defining segments along loop nesting lines is

reasonable.

-3-

Types of segmentation

Since most programs are segmented to some extent by either the

language or design process while they are developed, it will be

extremely infrequent that one encountered software completely void of

structure. Therefore, we will examine the nature and characteristics

of this prior segmentation and observe how it may be used for reliability

considerations.

The most frequently encountered type of segmentation is produced

by fragmenting the process into phases. While the decomposition is

often performed manually during program design, it can be introduced

after the fact by producing an acyclic program graph. The system

operates by sequential application of phases which are process oriented

and communicate by common data and directed calls to the next phases.

In operation, the phases may use memory overlays to conserve space.

For example an assembler might be segmented into first and second pass

phases where the first pass builds a symbol table, assigns addresses, and

expands macros that are used by the second pass phase in producing object

code.

Other program structures may have been imposed to accomidate

operation on specific hardware. In this category, the system may be

decomposed into serial self-sufficient tasks to run simultaneously. This

parallel segmentation allows reduced completion time when several hard-

ware processors are potentially available or considered separate in a

multiprogram environment.

While multiprogrammed systems may be manifested in many forms, the

two most prevalent are batch and paged systems. The batch system requires

-4-

entirely main memory resident programs with complete jobs swapped in and

out as required by I/O requests or system functions. Since pure batch

processing does not affect a program's structural properties significantly,

we will not direct attention to it. In paged systems, however, only a small

portion of the program is present in main memory at any given time. The

philosophy is that at any particular instant, the majority of processing

is local-instructions in the vicinity of the current instruction are more

probable than remote instructions and data references tend to be

localized. That is, each section of the program can be characterized by

a "working set" of instructions and data that are used most heavily.

Program references (instruction or data) outside the current working set

(called a "page fault") indicates a change in execution characteristics

and requires a new (possible overlapping) working set. Thus the program

is organized into pages such that a set of pages corresponds to the working

set required for significant amounts of processing. Attempts are made

to place loops on the minimum number of pages to reduce the number of

page swaps. Similarly, the data areas required for the looping segment

are grouped on the same data page. The program operates by having the

program information on mass sotrage and placing in main memory only the

working set required at any instant. Page faults cause the old pages of

the working set to be replaced by the required pages in main memory.

Old pages are updated on the mass storage copy to maintain execution

changes and reflect the state of the process when swapped. Even when

not a formal paging system, many similar characteristics exist when

instructionsaremultiply fetched or a cache memory system exists.

Rollback program structure is directed primarily toward diagnosis

-5-

and improved reliability. At various program points (rollback points)

the program state is observed and recorded. Execution then commences

to the next rollback point.where results are examined for correctness.

If correct, the program state is updated and execution resumes on the

next section. If an error is detected, the program state is returned to

the last rollback point and the program segment in error is rerun. This

scheme is intended to recover from transient hardware errors and prevent

solid faults from permanently damaging the data base (e.g. files used

as both inputs and outputs). The optimal location of the rollback points

will depend upon the overhead cost of saving the program state, and

minimizing the cost of lost processing time. In part, the location of

these points will require locating the places in the program in which

the minimum amount of information describes the program state. We will

assume here that the error detection criteria can be specified and the

rollback procedure itself is error free.

Notice that the different segmentation schemes are not necessarily

mutually exclusive, For example, the software system may have identifi-

able phases which are individually composed of parallel tasks. Each of

these tasks may be realized as a paged or rollback structure. Since the

properties of such a hybrid system can be largely derived by the super-

position of individual characteristics from the various philosophies,

we will deal here with the properties of pure segmented systems along one

of the themes.

Debugging ease.

Debugging a program is really an ongoing process rather than an

instantaneous development task. Ordinarily, the procedure is renamed

i

-6-

"maintenance"after the program is released for use even though actual

implementation errors are corrected. In any case, we can identify at

least two classes of activity: 1) initial operational investigation and

2) advanced inspection of suspicious events. The first activity involves

the removal of keypunch errors and bad coding to the point that the program

compiles and successfully executes test cases.

To realize these goals, the programmer usually employs two tactics:

1) Imbedded diagnostic print commands

2) System dumps of the program

Effective utilization,of diagnostic print commands requires programmer

precognition of both the program architecture and probable causes of errors.

Failure to anticipate these problems results in the insertion of new print

commands, recompilation, and additional run time to repeat the failure;

obviously, duplication of known errors is poor utilization of both computa-

tional and human resources. Offsetting advantages are the ability to capture

transient behaviors, exact interpretation of bit patterns (e.g. decoded to

floating point), and concentration on meaningful subsets of information.

System dumps are provided either on demand or as a post-mortem for

detected fatal errors (e.g. expired time limit, memory protection violations,

etc.). The completeness and format of the information, however, often

impedes the investigation probing. For example, to determine the value of a

single program variable, the programmer must compute the physical address

using a symbol table with relative addresses and several relocation biases.

Faithful execution of this exercise is rewarded with a compressed binary

pattern (e.g. octal or hexadecimal) requiring further decoding to the desired

representation (e.g. decimal integer or floating point). This process is

both tedious and error prone--largely because the information is organized

-7-

for convenient implementation in the computer. Since most of the required

information is already available, interactive automated assistance is both

valuable and tractable. The user could symbolically request variables and

specify the decode format. With access to cross reference, symbol table,

and source code from the compilation process, the interactive system could

be used to present lists of interacting variables and their values from the

dump data. For example, consider the FORTRAN code of Fig.la and directed

graph representation in Fig. lb. Suppose the programmer determined that

the value for F was erroneous and was searching for the cause. Beginning

in the source code at (*), the automated system could develop the relation-

ship of Fig. lc, showing the input variables contributing to the value of F.

The values of these variables, decoded in the format implied by the source

code, would be presented to the programmer for analysis. If a subset were

found in error, the system would continue to track those paths until the

problem was found. The amount of data generated could be regulated by an

upper bound on the number of variables or depth in the relationship structure.

The interactive system would remove the tedious mechanisms and provide

a complete list of inputs (some, quite obscure) to the area under investiga-

tion. The decode format indicates typing assumed by the source code which

may have been overlooked by the programmer. Many troublesome indirect

relationships can be quickly discovered in the interactive investigation

which might be elusive in the manual equivalent.

When reasonable confidence exists that the program is correct for test

cases and probably will not mutilate itself or the system, it is released

for use, and testing enters the second phase. In this second effort,

anomalies observed by users are examined and the sources of difficulty dis-

covered. As changes to the system are made to correct malfunctions, new

R 3
A 100.0
Y= 1.0
X =2.0
Q = X**2

DO 500 J = 1,100,3
S = F**3 - X*Y
C = X**2 - 2*X*Y + Y**2
IF (C.LE.3) GO TO 100

B C-3
P = Q**2

* F ABS(B**2) - SQRT(A)
P P+i
X =X-J
GO TO 500

100 C = ABS(C-3)
Y = Y + J*2
Q = Q*R+Y

500 CONTINUE

(a)

B

I
C

xJ

J

3

3

1

2

.3

4

5

(b)

F

/(c

(c)

Fig. 1

-8-

errors may appear as other portions react to the change and errors in

the modification are corrected. Hopefully, the process converges and

eventually all errors are purged from the program.

Whereas the first type of debugging is characterized by catastrophic

failures and complete lockup in the program, the second typically

demonstrates sensitivity to a particular situation and partial malfunc-

tion in the operation. In initial debugging,close control is required and

very detailed tracing of program operation is performed to insure that

individual small sections of code are properly coded and translated.

After these low level operations are verified, the program is allowed

to run more freely and details of the system examined for specific

types of anomalies. Usually, this level requires dumps of the system

and determining what the process was doing when the error occured. The

suspected error may be tested for repeatability and independence from

preceeding events.

Serial segmentation into phases allows some independence in the

total system that isolates large segments from one another in the

debugging venture; these segments, however, tend to be quite large and

may not offer significant advantages in the debugging effort. Conversely,

the paging segmentation organization may not provide lucid properties

to the debugger. It does offer the advantage that interacting data is

typically located on the same page. It is not, however, warthwhile

to expend the processing time to organize pages if the program is in a

state of rapid change. Therefore, the advantages of a page organized

program will probably become useful in advanced stages of debugging rather

then at the onset. Similarly, the information contained in segmenting

for parallel processing and insights into the cooperation of program

subparts obtained will be more useful in advanced debugging than the

-9-

initial phases.

Rollback may actually increase the debugging effort if the programmer

is required to code validity tests at rollback points. During initial

debugging, the designer may not have a good feel for operational qualities

of the program. Therefore, the production of the tests at rollback

points may force the programmer to analyze the system more extensively

than he would otherwise, with salutary effects. The production of the

rollback tests may be a fruitful middle activity between the initial

checkout and more advanced stages.of certification.

Hardware Failure Tolerance

Analysis of program tolerance to hardware failure encompasses two

aspects:

a) What is the minimum amount of available hardware the program

must have to run effectively?

b)How sensitive is the program to the failure of a particular

hardware component?

We can further classify failures into hard faults and transient faults;

either of these types may produce loss of program control or errors in

data manipulation. Of these various types of failure, the transient

error resulting in temporary loss of control or imperfect data is the

most insidious with high potential for nonrepeatable errors that may

go undetected for long periods of time. Hard faults resulting in signi-

ficant malfunction are readily identifiable and can be combatted with

proper backup restart procedures after a minimum hardware configuration

has been reestablished.

Phase segmented programs are the most straightforward representation

and require little additional hardware for proper- operation. Insensitivity

'/

-10-

to hardware errors can be introduced by complete duplication at consi-

derable expense. Transient faults may be detected at the end of a phase,

however, the permanent damage may have resulted to the data base, requiring

a complete restart procedure from the backup.

Paged systems require more operational equipment to perform page

swapping. It can provide better transient fault detection by detecting

suspicious page faults. From correctly confirmed runs, it is possible to

associate with each page lists of legitimate page fault locations. If a

transient error causes loss of control, the swap system could detect the

malfunction from this list and take appropriate corrective action. Undetected

errors would occur locally in a particular working set, hopefully with

constrained effects.

Programs in parallel segmented parts are designed to run on multiple

processors implying that more hardware may be required for maximum time

performance. This construction, however, allows for considerable flexibility

for graceful degradation of the system with hardware faults since any two

segments on different processors in parallel may be run serially on either

processor with no detrimental logical effects. Furthermore, since the

parallel segments run independently, faults from one segment do not affect

its-parallel companions on other processors; errors are localized.

Rollback systems are designed to be particularly valuable for detection

of faults. They require more hardware for saving states but can recover

successfully from such troublesome errors as transient loss of control.- They

further protect against permanent destruction of files by examining for

correctness before updating the program state. When errors are detected,

the program always returns to a known good state for retrial.

-11-

Sensitivity to Software Logic Errors

As previously described in the section on debugging, the discovery

of logic errors fall into categories of initial errors and advanced

inspections. Since initial errors are best discovered by straight forward

segmentation and the inadvisability of investing computational resources

for sophisticated segmentation schemes on questionably stable programs, we

will deal here with the problems associated with advanced logic errors

(i.e. "maintenance" problems).

The single most valuable tool in combatting software logic errors

isprevention. To this end, all the segmentation schemes provide insight

into the system interconnections enabling the programmer to recognize how

tentative modifications will be received. Armed with this information,

collectively acceptable changes can be tailored. Paged organizations

provide some information on variables affected since interacting quantities

should have common pages. Parallel organization will indicate the precedence

relations among the components. Similarly, phase oriented organizations

will provide the interconnection of large components with each other. In

all these cases, however, immediate neighbor information is more easily

obtained, while complete interconnection must be obtained by transitive

relationships among the adjacent portions.

After appropriate preventative measures have been applied, the

detection of persisting errors can be performed during trial runs of the

modified version. In paged systems, the allowable page transitions previously

collected can be used to indicate where changes have modified this operation.

This data will assist in spotlighting suspicious operational characteristics

that can be confirmed as correct or identified as errors.

If, after modification, the parallel segmentation analysis is performed,

the precedence relationships can be compared between the previous version

and the new one. Changes in dependency among the tasks should be investigated

-12-

and confirmed. Furthermore, the analysis will establish the precedence of

new code to be confirmed with the hypothesized dependency.

Checking Values and Times

To verify the proper operation of the program, it is desirable to

examine dynamically the values of significant data. Furthermore, timing

investigation may provide meaningful information concerning the code

integrity of a section. The number of inspection interfaces and their

location depends in part on our confidence in:the code section and how

closely we wish to monitor the operation. If too many points are monitored,

the inspection overhead may degrade the program's operation and produce

distorted timing results. Furthermore, the very mass of data generated

may obscure overall operational considerations. If the program is not

monitored frequently enough, checkpoints may not be reached by nonterminating

program segments. By the time the malfunction is discovered, the resulting

system state may be so mutilated that it is impossible to decide the cause.

With currently available techniques it is possible to catalogue all

variables used in the program and automate the insertion of the software

probes at all places a variables is used. Thus, once significant variables

have been selected, the investigator is relieved of the task of locating all

occurrences and must simply code the appropriate check for the selected

variable. This checking may take the form of absolute bounds, conditional

situation dependent upon the dynamic value of other variables, or a particular

type of sequential activity (e.g. monotone increase by fixed increment)

possibly identified with a particular program section. The investigator may

choose to limit the inspection to only those activities which modify the

variable value (i.e. where it is an output of some activity), only where it

affects results (i.e. where it appears as an input), or only in a particular

-13-

section of the code (abridging the complete list of variable activity

pointers). Thus the investigator has the capability to specify the level

of detail desired in the monitoring by selecting the data to be observed.

The examination of timing information may require collecting

frequency of a segment's execution or the aggregrate time expended on a

section. The first aspect is more easily implemented while the second pro-

vides additional details. This timing data could be used to improve the

program's performance or to study its operational variation to demand.

Actual time information appears more valuable in realtime applications and

where an unduly heavy or light computational effort appears contrary to

expectations.

All the segmentation schemes provide to some extent the recognition

of local variables used only for intermediate and short term results. Major

control data and variables of most significance is usually more globally

defined. If the program is segmented in phases, the size of the segments

may be quite large. Inspections may be desired more frequently than the

phases change.

Although paged segmentation does not directly assign pages along

logical program lines, the reduction of page swaps and working sets tend to

correspond more to the program logic than a random selection. The checking

of values and time at page swap times would allow considerable autonomous

processing to occur before examining results; permanent changes to the

program state in mass storage may be conditional on the checking outcome.

Similarly, the parallel processing segmentation provides convenient and

meaningful points of investigation in the interim between the completion of

one task and the scheduling of the next.

The rollback segmentation is designed specifically to optimize the

-14-

checking of interim results before advancing the program state. This

type of structure is predicated on minimum checking within acceptable

recovery and examination limits. Thus it is the most logical structural

type for this type of activity. In fact, the examination of acceptable

results is critical to rollback operation since this analysis forms the

basis of decisions to proceed or retry.

Independence and Integration of Program Segments

Since all segmentation schemes by definition provide isolation from

neighboring code, they are all partially valuable for the independent

checkout of logically separate functions. Some of the techniques, however,

provide more reasonable structure than others. For example, the page

organized structure may not provide exactly the type of separation required

for stand alone checkout. Furthermore, in integration, the organization of

code on pages may change considerably from the form when analyzed for stand

alone operation.

Parallel structures, however, will largely maintain their precedence

relationships when integrated. Some of the tasks may become dependent or

establish a requirement for tasks external to the stand alone function, but

the relationships among the tasks within the segment maintain relationships

relative to each other. Integration then requires relating boundary tasks

dependency between two subparts, preserving computational investments in

segmenting the subpart.

The most logical candidate for independent checkout is the phase oriented

structure where the parts of the program are identified with distinct functions

and thus quasi-independent in nature. Integration of these independently

verified portions usually requires manual effort since any interface require-

ment may exist. This problem may be minimized by strict definition of the

-15-

communication structure between program subparts and verifying

compatible specifications between originator and user segments.

Rollback structures provide the necessary mechanisms for restarting

the program from the last rollback point. Therefore, its value is largely

in assisting with the debugging of the integrated system by concentrating

processing power on the malfunctioning area rather than running preceding

sections to condition the program state for the suspect segment.

Instruction Set and Linkage Effects on Reliability.

Since the instruction set and linkage characteristics enhance or

impede translation efforts from abstract concepts into machine compatible

form, their selection impacts the software reliability. Inconsistent

conventions, ambiguous operations, and poorly defined operational specifi-

cations contribute to coding errors. Conversely, concise and logically

compatible instructions greatly reduce misinterpretations or hardware

functions. Establishing common ground of understanding between hardware

operation and the programmer can take two forms. The classical approach is

through operational documentation and providing instructions useful to

collective target user classes. Alternatively, a machine with restructurable

qualities allows users to construct languages and conventions they desire.

Selecting a suitable instruction repertoire for the process can significantly

reduce code bulk, limiting opportunities for keypunch errors and providing

organizational clarity.

In accommodating the user, the hardware usually assumes some additional

burdens. For example, the information storage might include typing information

using tag bits as well as value information. Thus, generalized memory words

become executable instructions, integer data, floating point numbers, logical

values, array members, etc. The instruction set is reduced since argument

4,

-16-

contextual information dynamically augments the instruction op code

removing the necessity of type explicit mnemonics (e.g. Integer ADD, Half

word ADD, Floating Point ADD, Floating point double precision ADD, Logical

ADD, etc. become simply ADD).

Similarly, special operations may be included to accommodate operations

required by segmentation schemes. In the coordination of parallel tasks,

a "test and set" instruction allows easy lock and key operations. With this

operation, one can simultaneously test for availability, obtain access, and

exclude other processors without resorting to elaborate software routines

(e.g. queued requests serviced by a master scheduler). Rollback implementa-

tion is facilitated by instructions designed for examining program state

attributes, and allowing easy reloading of a previous state when errors are

detected. In paged systems, relative addressing is essential to efficient

operation. Program pages are not necessarily loaded in the same absolute

location when swapped; this dynamic residence is accommodated by loading a

"base register" or performing page relative operations. The relative

addressing scheme may play an important role in detecting page faults (e.g.

an address overflow of the page boundary).

The desirability of tailoring descriptive constructs for a particular

purpose has long been recognized. This realization has resulted in the

development of macro assemblers, procedure oriented languages, and easy

subroutine specification. While these techniques may offer the required degree

of flexibility, the application of pyramided constructions seriously degrades

operation performance compared to systems written in the computer's native

tongue. With the advent of dynamically microprogrammable computer hardware,

the potential exists to create instructions of comparable (and often improved)

execution properties. Since most programs utilize only a small fraction of the

-17-

sanctioned op codes, the user may choose to substitute a custom instruction

for one he is not using. Similarly, he can modify existing conventions for

compatability with the program's intent.

It should be noted that questions of instruction suitability is not

a static property since operational applicability changes as the program is

debugged. In the initial phases of debugging, the user might want a highly

investigative operations with close examination of data types for compatible

properties (e.g. identification of mixed mode operations) or possible tagged

data for trace purposes at the temporary expense of value precision and range.

Once validation has advanced and the program is placed in production, the

investigative procedure may be removed to streamline process execution; that

is, diagnostics become overhead after detectable errors are purged. If the

program requires significant maintenance, the diagnostic instruction set

could be reinstalled to assist integrity verification of the modified version

and assure acceptance by unchanged sections.

Of course, an equivalent software test could be placed in the code to

perform checks with conventional instructions. Among the advantages of

instruction modification are speed and the stationary property of the software

code. Since the same code is used for both test and application, segmentation

schemes are not affected. Placing software checks in the code may affect the

program's segmentation into pages or parallel tasks. When the checks are

removed, the program must be analyzed for segmentation.

It is possible to err in defining instructions with microcode just as

in any other specification, but mistakes are likely to be more pronounced by

misformulated instructions. Since the instructions are such frequently used

building blocks, errors here produce more.apparent malfunctions, easily

detected and repaired. Investigators would be less likely to encounter

subtle faults which might go undetected.

-18-

Diagnostic and protective hardware features can be powerful tools in

the verification process. Such tactics as protected memory areas (e.g.

unprotected, read only, and execute only) are useful in preventing programs

from progressive mutilation that obscures error location. When the malfunction

effects (e.g. a location improperly modified) are known and the cause is

undecidable, a "break point" feature which monitors references to the

symptom area may provide the fastest method of error location.

One of the greatest causes of program malfunctions is the linkage of data

to subfunctions. The linkage may be provided dynamically in execution by

formal parameters or compiled linkage using macros or common statements.

Problem sources include misunderstanding of the subroutine operation or side

effects from the execution. Since few languages require direct specification

of variables classified as inputs or outputs, the problem is compounded for

the user. One possible protection is assumption of all variables being

subject to change; only local copies of the required data are coupled. If

a parameter is modified in the subfunction, the results are ignored by the

calling routine. This scheme, however, is only applicable for formal para-

meter linkage.

Another alternative which rectifies several problems again involves the

use of in memory tagging. Since the user and subfunction each have local

notions of inputs and outputs, they might independently specify tag conditions

for each class. The subfunction would be responsible for checking the tags

for appropriate typing. This scheme could further reduce problems of unequal

parameter list lengths and respond with a warning when the condition was

detected. Similarly, if tags additionally reflect data typing, the subfunction

could confirm coupled data of consistent format. As before, when detected

errors have been rectified, the checking overhead might be removed.

-19-

Repetitive Use of Reliable Modules

When a frequently used activity is identified, it is typically isolated

as a subfunction and takes the form of a subroutine, procedure, or macro.

The service subfunction is invoked by program sections requiring the activity.

This allows economy in coding effort, possible reduction on memory require-

ments, and increased confidence of faithful operation. Clearly, it is

superior to recoding the operational sequence each time since this would

increase chances of transcription errors.

The subfunction manifestation will depend upon its functional charac-

teristics. We can categorize these characteristics as reentrant, serially

reusable, and unrestricted.

Reentrant properties require pure procedure subfunction specification;

any modifications to data are made relative to the invoking call. Thus,

temporary values within the procedure itself are forbidden.

Serially reusable code allows temporary modification in the subfunction

provided the original state is restored before exit. Thus, on a serially

used basis, the subfunction is identical on each successive application.

Unrestricted code may take any form and may perform differently

depending upon when it is used and how many previous executions have occurred.

Although the simplest form to code, efficiency in code production may be

offset by increased debugging time.

Suppose in a correctly functioning program, there is a subroutine with

formal parameters. If the subroutine is unrestricted in form, we must retain

a single central copy of the procedure which is shared by all invoking calls.

If the code is serially reusable or reentrant, we have the option of either a

single copy or replacing calls with a macro expansion of the subroutine and

compiled linkage for a particular call.

. , .~~~~~~~~~~~~~~~~~~~~~

-20-

If the program is parallel task oriented and subfunctions are reentrant,

a single copy or expanded macro are equivalent. If the subfunction is

serially reusable, a central subroutine requires lock and key protection in

a multiprocessor installation. Common usage of single copy, nonreentrant

subroutines establish a precedence relation among tasks potentially parallel

otherwise. To remove this restriction local copies could be provided for

each invoking task unless the subroutine is unrestricted. Unrestricted

subfunctions require central copies with lock and key protection.

In page segmented programs, calls to subroutines may produce undesirable

page swaps. Hence, restricted subfunctions expanded as macros would

materially enhance the operation. Little study has been performed on the

time decrease, space increase tradeoffs of this alternative.

In rollback segmented systems, central subroutines impose a restriction

on roll back point placement. If the analysis determines an optimal roll

back point for a program segment in the center 6f a subroutine, clearly this

point is not necessarily optimal for other subfunction calls. Here, again,

the option of expanding like a macro would be potentially advantageous.

Language Processor Reliability Role

The language processor will bear considerable responsibility for the

automating analysis required to ease control and validation. Of course, it

is a necessary prerequisite that this processing be highly reliable to avoid

introducing errors not intrinsic in the program specification. Since boot-

strapping validation process requires a firm basis, the language processor

will require considerable attention; anomalies must be quickly and effectively

repaired.

The language processor will be required to catalogue and correlate the

symbolic program realm to the machine compatible realization. Here the

-21-

variables and their use type are recorded, the program graph is developed.

From this information, it is possible for segment producing programs (e.g.

parallel task recognition, fitting code to pages, linkage between phases,

etc.) to operate. Attention should also be given the language translatidn

properties such that the programmer's intent and control specification may

be lucidly displayed.

Toward this end, the language should allow typing distinction where

linkage to unfamiliar portions is performed. In subroutine calls, the

calling parameters could be distinguished as to input and output usage with

declarations of nonvolatile data.

The language processor should be capable of automating simple symbolic

relabeling to facilitate common nomenclature among the several components.

For example, if several segments utilize the same data, the same symbolic

name should be used in both segments. This requirement is difficult to

realize in the initial stages of development since the common name set is

unstable until the program has advanced in checkout. Furthermore, ex post

facto nomenclature may conflict with a current name in the segment, creating

problems in the relabeling procedure. Therefore, there must be coalescing

hierarchy such that more global variables are given nomenclature preference

for common linkage, local name conflicts can be automatically and completely

adjusted. Automated relabeling techniques are the only modification method

which appears to provide confidence of complete detection.

Some language aspects that create barriers to relabeling are the linkage

by common and equivalence statements. Equivalence statements offer no real

difficulty when used for alternate symbolic names with the same structure.

When they are used to establish spatial relationships among structural data

(e.g. arrays), the mapping of old labels to new may be more complex. For

-22-

example, let there be two one dimensional arrays of size 9 and 10 items

called "A'' and "B" respectively. With an equivalence statement that the

first element of B is identified with the second element of A, we have

established that the two arrays are skewed relative to one another. If the

relabeling procedure requires A to be relabeled as "TIMES" for symbolic

system consistency, then references to B must be related to entries of

TIMES. In this example, the transformation is fairly obvious in replacing

appearances of B(I) with TIMES(I+l); in other situations, however, the changes

may not be so straight forward; even if practical, the transformed represen-

tation may not provide more clarity.

Common data offers the potential for reorganizing data passed between

routines and the relabeling of quantities in the comon data base. For

example, data represented as integers in one program'may be used collectively

in another routine as array elements (e.g. A, B, C, link with elements of

COSTS(3) in another). In fact, this type of usage may establish a hierarchy

of data structure in the program where one routine is concerned with the

data on a higher level than its service subfunctions. When the variables are

typed by the language (either explicitly or implicitly), the typing specified

by each routine using the common data should be compared for consistency.

This examination would indicate occasions of misunderstandings in multiauthor

systems or when modifications are applied and serve to spotlight places where

"tricky methods" restructure the data. This automated examination should

include checks for the following:

1) Change of variable type

2) Scalars broken out of arrays

3) Array structure change (e.g. change in number or size of dimensions)

4) Misaligned array boundaries (e.g. where arrays do not fully cover

one another between specifications)

-23-

The language process can be of significant value in the initial

debugging and correction effort, particularly when highly interactive systems

are available, by utilizing techniques of incremental compilation. In this

system, the program is structured on a language statement level with each

statement compiled directly and interconnected by an execution time super-

visor. The supervisor directs the execution of the independent code corres-

ponding to the sequence of statements, regaining control after each statement

has been performed. This allows the user to step through the program or

specify noninitial starting points that will concentrate on the particular

problem being investigated. Data cooperation is managed by the supervisor

using a retained symbol table to facilitate inquiries on a symbolic basis.

This structure allows modifications to be made on a statement basis and only

newly introduced code need be compiled before run results are produced.

rI

-24-

II. PROGRAM VALIDATION

1. Introduction

The concept of program validation by exhaustive testing of all flow

paths through large programming systems together with their input and

output relations is an intractable task for interesting programs. Therefore,

all successful efforts at program validation must begin with specification

and utilization of program modularization and sub-unit structuring (some

of the related concepts are explored in the section entitled "Program

Structures"). It is the usual case that modularization in the design and

specification process proceeds from the "top down" while the actual coding

and debugging is carried out from the "bottom up". This implies that it

is necessary in the process of program validation to reconstruct elaborately

many local environments for program modules at the bottom of the design

specification tree. We specify in this report a program validation system

which is designed to enable the retention to a considerable extent of the

natural "top down" outlook where this is desirable in the coding and vali-

dation phase as well as in the design specification stage.

The characteristics of'modular design appropriate for rigorous program

validation may be different from that desirable for modularization to

produce convenience and speed in the actual coding process.

1.1 Modular boundaries must be as rigorous as possible.

1.2 Multiple entries and exits, and transfers to incompletely

specified labels and program structures mustbe avoided.

1.3 Shared data bases, whether explicitly transmitted parameters

or global tables, arrays, and other structures, should have

restricted and explicit access mechanisms.

1.4 The validity of language defined characteristics of explicitly

transferred data should be rigorously examined.

-25-

2. Techniques for Validation of Modular Programs.

Adherence throughout the modularization scheme of these properties

allows the development of a validation system based on the following

component techniques.

2.1 Automatic validation of modules through rigorous proofs of

correctness of the programmed representation of the algorithms

(See Appendix A)

2.2 Automatic validation by exhaustive or selective analysis of all

flowpaths through selected modules.

2.3 Analysis of validity of data bases used by the modules. This

can be accomplished by examination of explicitly transferred

parameters and by automatic analysis of access and sequencing

mechanisms for global common data bases (See Appendix B.).

2.4 Rigorous modularization allows the use of mixed execution-

simulation testing. That is, program modules may be replaced

in the testing phase by simulation of their functions. This

simulation may include such features as generation of limiting

test cases for calling and called modules and extensive validity

checking for transmitted data. Such simulation conveniently

allows total environmental testing of only partially coded total

programs through the simulation and use of data structures which

are not yet implemented.

2.5 A further possibility whose convenience is enhanced by rigorous

"top down" modularization is mixed compilation-execution and

interpretation of source code.

3. Afi Integrated Validation System

It is highly desirable to have an integrated programming (and hardware)

-26-

system reflecting this conceptual structure. This suggests that ideally

there would be produced a programming system with a compiler and interpreter

for a problem source language and a compiler for an appropriate problem

simulation language, all operating under a compatible control system. This

would clearly be an elaborate and expensive system. Indeed, the production

of such a system without the existence of errors in the system itself is

unlikely. A more economical and reliable alternative is to develop a pre-

processor system for a standard manufacturer supplied programming language.

Such a pre-processor would process language forms appropriate for the problem

area and to the simulation of the problem area. The translator would be,

however, to the standard high level language. It would be capable of imposing

coding conventions for the standard language which would imply and enforce

rigorous modularization, checking of explicitly transmitted parameters, and

translation checking and validation of global data access. It could also

generate the environment necessary to allow calls to simulation modules or

to invoke an interpreter system for modules. It could, in addition,

conveniently provide a partial execution trace by imbedding dump and trace

activities. The cost of a pre-processor system to function, for example

on FORTRAN, is an order magnitude less than the direct production of compiler-

interpreter systems.

4. Analysis of Components

We turn now to a detailed analysis of the problems and costs as associated

with the five component techniques.

4.1 The "state of the art" of rigorous proofs of the correctness of

representations of algorithms in programming languages is in an

early state. It seems possible within the next two to five year

period to bring this to a fairly respectable state of automatic

-27-

analysis. At the moment, there is much work remaining to be

done on identifying the properties of languages and the types

of statement structures which simultaneously allow ready

application of rigorous mathematical analysis for correctness and

ease and convenience of problem formulation. We attach as Appendix A

a detailed report on work done in this area under this contract.

4.2 The generation of all possible tasks through modules of modest

size can still be a very significant, if not computationally

intractable size. It is, however, for most currently used pro-

gramming languages, a problem which is quite soluble in terms of

reasonable costs. It is still, however, important to be able to

selectively key upon partial aspects of the flow of control access

modules so as to obtain manageable flow graphs for logically coherent

concepts. It is also important to be able to key on critical data

values which determine flow paths of special interest. A further

use of critical data values is to be able, in the flow analysis to

specify values, sets of values, or ranges of values, for these

variables to further select flow paths of special interest. Appendix

B to this report outlines work done under this contract toward the

automatic production of flow graphs and the use of critical data

values concepts.

4.3 Analysis of data base validity factors into two portions;

Validation of explicitly transmitted information and validation

of access to global information. The validation of explicitly

transmitted information may occur through several mechanisms: by

explicit analysis in the source code, by analysis of language defined

concepts by the compiler or language interpreter, by hardware analysis

-28-

of data types and allowed location ranges (transmission of

arguments by reference only using a specified range of cells),

by embedding of simulation modules or by interpretive execution.

This boundary interphase problem is a difficult one in that modular

testing isolates the consuming process from the supplying process.

This is a problem which has had exceedingly little study from the

basic computer science viewpoint. It is clear that a mixture of

devices will be needed. The study of access to global data is a

special case of the flow path analysis of section 4.2. The flow

paths studies can be selected to be those involving sequence of

access to common data and the actual access mechanisms. There has

been implemented, partially under the support of this contract and

partially by the National Science Foundation, a program which carries

out analysis of access to data structures by producing a flow graph

of the access and sequencing process and comparing it to a flow

graph or glow graphs for correct access and sequence mechanisms.

4.4 The use of mixed execution-simulation testing has a fundamental

effect on testing strategy. It allows the partial relation of

global or "top down" program development. A completely executable

program must have all of its modules coded before its key modules

can be tested in a complete environment. This usually means that

attention is focused on the coding of the individual modules of

the design and specification of the environment of the individual

modules at the leaves of the tree. The mixed execution-simulation

testing allows that modules may be tested by execution at any level

on the tree with the balance of the operating environment being

simulated. It would typically be the case that development of a

-29-

simulated module will be as expensive as the development of the

actual module. Additionally, the normal circumstance will be that

a simulation will have to be carried out in the language used by

executable modules. This is a point which needs to be altered.

In some cases it will be possible to write a comprehensive environ-

mental simulator without having to reproduce in toto the modular

structure of the executable code. It is readily possible to pro-

duce an integrated debugging system which would have a run-time

compatible problem source and simulation source through the use of

a pre-processor as described in Section 3.

4.5 The motivation for the use of an interpreter as a program vali-

dation tool is the ease with which traces of system activity can

be maintained. The need for an interpreter, however, can be

lessened by the use of a pre-processor system which can assist in

the generation of partial traces. A particular advantage of an

interpreter is that it can be made to interpret the problem code

into convenient problem-oriented structures and formats. The

construction of an interpreter for rigorously segmented modules of

code is far less effort than that of an interpreter for a typical

general programming language environment. The use of an interpreter

only for small modules of code overcomes the principle problem with

the use of interpreters which is their extreme slowness and high

cost of operation. The enforcement of an appropriately rigorous

modular structure makes the use of interpretation a reasonable

tool for program validity testing.

-30-

APPENDIX A

A Program to Aid in Proving Program Correctness

Rigorous methods now exist for formally proving that a computer

program will behave correctly at run time. Currently, the most generally

useful of these is the inductive assertion method which consists of the

two phases diagramed below. First, a set of conditions, called verification

conditions, sufficient to imply the correctness of the program is constructed

by examining the program itself and a statement of how it is to behave at run

time. The second step then is to prove that this set of sufficient conditions

is satisfied.

Program -1 Verification Theorem Proof of
Condition Verification PThere __>)Run Time
Generator)Conditions > owerCorrectness

Statement of---)
desired behavior

Phase 1 > Phase 2 >

Both of these phases can be performed manually for sufficiently simple

programs, however, for more complex programs, mechanical assistance is

required to cope adequately with the large amount of details involved.

A verification condition generator program for the first phase of this

method has been completed. This program is written in SNOBOL4 and operates

on programs in a language called Nucleus. This is a simple, but complete,

programming language designed in such a way that every program in the language

can be rigorously analyzed by the inductive assertion method. The language,

which has an ALGOL-like syntax, contains data variables and single subscripted

arrays of types integer, boolean and character. All variables are regarded

as global variables. The language contains assignment statements, go to

-31-

statements, if-then and if-then-else statements while statements, two

forms of case statements (computed multi-way branches), and procedure calls.

Procedures are parameterless, but recursive, and have no local variables.

The following example is a Nucleus program for evaluating a polynomial of

degree < 100 by Homrner's method (nested multiplication). The coefficients

of the polynomial are contained in the array COEF in order of decreasing

powers of x -- COEF[O] is the coefficient of XEGREE and COEF[DEGREE] is

the constant term.

INTEGER DEGREEX; INTEGER ARRAY COEF[100]; $INPUT VARIABLES$
INTLGER TERM; $INTERMEOIATE VARIABLES$
INTEGER PATX; $OUTPUT VARIABLES$

PROCEDURE HORNER;
PATX = o;
TERM = 0;
WHILE TERM < DEGREE DO

PATX := PATX*X +* COEF[TERm];
TERM := TERM + 1;

ELIHW;
EXIT;
START HORNER;

The question of stating the correctness of this procedure is handled

by making two assertions, one at the beginning and one at the end of the

procedure. The first is regarded as an initial assumption and the other as

a desired result. The procedure is considered to be correct if the desired

result is true whenever the initial assumption is satisfied. The HORNER

procedure together with a statement of correctness is shown below. In the

assertions, a variable name standing by itself denotes the current value

of the variable. A variable name followed immeidately by "0" refers to the

-32-

value of that variable at the time the procedure was entered. For example,

the first assertion in the desired result states that values of X, DEGREE,

and the entire array COEF are unchanged by the procedure.

INTEGER UEGREEqX INTEGER ARRAY COEF[100i] $INPUT VARIABLES$
INTEGER TERM; $INTERMEDIATE VARIABLES$
INTEGER PATX; $OUTPUT VARIABLES$

PROCEDURE HORNER;

ASSERT 0 S DEGREE S 100;

PATX := 0'
TERM := 0;
WHILE TERM < DEGREE DO

PATX := PATX*X + COEF[TERM3;
TERM := TERM * 1;

ELIHW;

ASSERT X = X,0. DEGREE = DEGREE.,09 COEF = COEF0O
ASSERT PATX = SUM FROM I=0 To I=DEGREE OF COEFtIJ*Xt(DEGREE-I)1

EXIT;
START HORNER;

To apply the inductive assertion method, assertions also must be

associated with enough intermediate points in the procedure so that all

loops are intersected--there must be no path of control in the procedure

that can flow from a point p along some path and return to p without first

passing by some assertion. In HORNER we can associate assertions as shown

below. The assertions express the "partial computation" that the procedure

has performed to that point.

-33-

INTEGER UEGREEX; INTEGER ARRAY COEF'100]; $INPUT VARIABLES$
INTEGER TERM; $INTERMEDIATE VARIABLES$
INTEGER PATX; $OUTPU1 VARIABLES$S

PROCEDURE HORNER;

ASSERT 0 < DEGREE S 100;

PATX := 0;
TERM := o;

ASSERT X = X.0, DEGREE = DErREE,09 COEF = cOEFo;
ASSERT 0 S TEPM S DEGREE+1l
ASSERT pATX = SUM FROM 1=0 To I=TERM-1 oF COFF[I]*Xt(TERM-l-I)1

WHILE TERM 5 DEGREE DO
pATX :: PATX*x + COEF(TERM];
TERM := TERM + 1;

ELIHW;

ASSERT X = X.09 DEGREE = DEGREE.O, COEF = COEF.0;
ASSERT PATX = SUM FROM I=o To I=DEGREE OF COEF(IJ*Xt(DEGREE-I);

EXITI
START HORNER;

Currently, these intermediate assertions must be chosen manually and

represent one of the most difficult parts of applying the inductive assertion

method. However, the search for these intermediate assertions frequently

has beneficial side effects. To find appropriate assertions requires a

very thorough understanding of the operation of the program, and attempting

to understand the program to the required degree frequently uncovers program

errors.

The verification condition generator program produces the following

output for the procedure HORNER.

INTEGER DEGREE.,X;
INTEGER TERMI
INTEGER PATX

INTEGER ARRAY COEF[100]; SINPUT VARIABLES$
$INTERMEDIATE VARIABLES$
$OUTPUT VARIABLES$

PROCEDUPE HORNER3

(0O1)ASSERT 0 S DEGREE < 100oo;

(O)PATX := O;
(1)TERM = 03

(2,1)ASSERT X = X.O0 DEGREE = DEGREE.o, COEF = COEF.0;
(2,2)ASSERT 0 < TERM < DEGREE+lI
(2.3)ASSERT PATX = SUM FROM I=O TO I=TERM-1 OF COEF[IJ*X+(TERM-1-I);

(2)WHILE TERM S DEGREE DO

(3)PATX := PATX*X + COEF[TERM];
(4)TFRM : TERM + 1;

(5)ELIHW;

(6*1)ASSERT X = XeO, DEGREE = DEGREE.09 CoEF = COEFs0;
(6,2)ASSERT PATX = SUM FROM l=O TO I=DEGREE OF COEF[I]*X+(DEGREE-T);

(6)EXIT;
START HORNER

PROCEDURE HORNER PATH 0 1 2

0 < DEGREE 5 100

0 PATX.1=0
1 TERM.1=O

2.1 X = X, DEGREE = DEGREE COEF = COEF

2.2 0 < (TERM.1) < DEGREE+1

2*3 (PATX.1) = SUM FROM I=O TO I=(TERM.1)-l OF COEF[I]*X+((TERM.1)l--I)

PROCEDURE HORNER PATH 2 3 4 5 2
2.1 X = XeO, DEGREE = DEGREEO, COEF = COEFO
2.2 0 5 TERM < DEGREE+i
2.3 PATX = SUM FROM I=0 TO I=TERM-1 OF COEF[I)*X+(TERM-I-I)

…________________--…-_--_--___________-

TERM<DEGREE
O<TERM5 100
TERM.1=TERM+i

ro PATX.1=PATX*X+COEF[TERM]

-. 0 0 0 0 * * * 0 * 0 0 0 0 0 0 0 0 0 * 0 0 6 * 0 0 0 4 * 0 0 * 0 0 * 0 a 0 0 .

2,1 X = X.O0 DEGREE = DEGREE.0O COEF = COEFeO

2.2 0 < (TERMe1) 5 DEGREE+1

(PATX.1) = SUM FROM I=O TO I=(TERM.1)-l OF COEFCII*X+((TERM.1)-l-I)

2
3

t

-35-

PRECEING PAGE BLANK NOT FTLMED

PROCEDURE HORNER PATH 2~ 6
2.1 X = X.0 9 DEGREE = OEGREE.09 COEF = COEF*O
2.2 0 < TERM < DEGPEE+1
2.3 PATX = SUM FROM I=0 TO I=TERM-1 OF COEF[I]*X+(TERM-1-I)

2 -,(TERM5DEGREE)
0.0o...... * S .5O.eee* * @o *eeeoeo0....

61X = X.O9 DEGREE = DEGREE.o9 COEF = COEF.O

6.2 PATX = SUM FROM I=o TO I=DEGREE OF COEFtI]*X+(DEGREE-I)

A listing of the program is produced in which control point numbers

have been inserted. These numbers are used to be able to refer to paths

of control through the program and to relate these paths back to the actual

program. The second part of the output is :the set of verification conditions.

Each verification condition has the form

Assertions at the beginning

of the path

.

Terms due to traversing the

path
. . .*

Terms due to assertions at the

end of the path.

For a verification condition to be satisfied, the terms above the dotted

line must logically imply those below. Also the initial assumption may be

applied at any time in proving the terms below the dotted line. For the

HORNER example, it can be proved that each of the three verification condi-

tions is satisfied, and hence HORNER is correct.

The verification condition generator that has been completed for Nucleus

programs is a first step toward semi-automatic proving of program correctness.

The program as it now stands could be applied to a fair number of actual

-36-

computer programs (provided they were first translated into Nucleus) to

assist in making rigorous proofs of correctness feasible. Further auto-

mation of the overall method will make proofs feasible for an even larger

class of programs.

-37-

APPENDIX B

Analyzing Sequences of Operations Performed by Programs

I. Introduction

Many interesting properties of programs can be stated in terms of

the sequence of operations they perform. The uninitialized variable

problem for example can be described as a violation of the rule: "In any

computation of a program using a variable X, some operation which assigns a

value to X must precede all operations which use the value of X." A second

example is found in communication between processes in a multiprogramming

system. Correct communication requires that each process obey a protocol

such as that of the "critical section" (1) in which the process must set an

interlock before assessing a shared data structure and subsequently must

release the interlock. The objective of the research described here is the

development and automation of a procedure for verifying that programs obey

given ordering rules on the sequences of operations they perform.

Traditional debugging by enumeration of cases breaks down for large and

complex programs such as operating systems. The procedure described here

uses verification rather than simulation techniques, which is to say that

programs are checked out by direct inspection of their source code and are

not actually run. It consists of comparing a given source program with a

prototype for correct sequences of operations and reporting those parts of

the program which cannot be matched with the prototype.

The structure of this paper is as follows. Section II describes the

basic idea of the approach, including the description of programs and their

computations by state graphs, algorithms for manipulating state graphs, and

the overall structure of the verification procedure. Section III describes

the realization of the procedure in an experimental analysis program and

-38-

gives more detail about the algorithms used. A point of special interest

about the analysis program is that it has been applied to real programs

taken from a real operating system. Section IV summarizes the applications

to which the analysis program has been put.

II. Basic Concepts

This section summarizes the theoretical aspects of analyzing sequences

of operations. Although a certain amount of formalism is used, proofs and

detailed definitions are omitted for the sake of brevity. State graphs and

their correspondence to programs are defined first, followed by a general

technique called folding for manipulating state graphs. The class of program

characteristics analyzable by the state graph technique is defined in terms

of folding into a prototype graph. Finally, the overall structure of the

analysis procedure is stated and some general considerations are discussed.

A state graph is a directed graph with labeled edges. Several edges

with different labels may connect the same pair of nodes, and a node may

have several edges with the same label entering or emerging from it. The

nodes of the graph correspond to program states, that is, to the distinct

combinations of values of all memory cells used by the program. The contents

of registers, such as the instruction location or program counter, are also

included. The edges of the graph correspond to the sequential transitions

of the program from state to state as it runs, and are labeled with the

symbolic operations performed.

Formally, a state graph is an ordered triple G,= (S, A, -) where S is

a set (the states), A is a finite set (the operations), and - is a subset

a
of the Cartesian product S x A x S. We write x 3y if (x, a, y) is an

element of a.

The state graph of a program explicitly describes the set of computa-

tions of the program in terms of paths through the graph. Sequences of

-39-

operations, or traces, are simply the sequences of edge labels along such

paths. Unfortunately, the state graphs of actual programs are quite large

if not infinite, so it is impossible to deal directly with them. A

general technique called folding is used to compress and modify state

graphs in finite space and time.

Folding is the merging together of states while preserving the edges

involving them. This is formalized as follows. A homomorphism of a graph

G = (S,A,-) into a graph H = (T, A, -) is a mapping f: S -> T such that

x y in G implies f(x) a f(y) in H.

If such a homomorphism exists then H is a folding of G. For a thorough

discussion of graph homomorphisms, see (2).

It is easily shown that since a folding preserves individual state

transitions, it preserves paths and thus sequences of operations. Said

another way: If ab...c is a sequence of operations in G, and H is a folding

of G, then ab...c is also a sequence of operations in H. Note however that

the converse is not true. A folding can introduce spurious traces unless

its inverse is also a folding. Whether or not the spurious traces do any

harm in the analysis depends on the context in which the folding occurs.

The general strategy is to keep the state graphs as folded as possible without

introducing undesirable spurious traces.

The foregoing definition gives no hint as to what an appropriate

homomorphism is like. In analysis of programs, foldings almost always can

be defined by ignoring selected program variables. If the variables of a

program are divided into two sets, one to be preserved and one to be ignored,

then the program's state set can be considered to be a Cartesian product

S = A x B, where A represents the values of the interesting variables and B

those of the uninteresting ones. Assuming this has been done, an appropriate

-40-

folding is the projection mapping f(a,b) = a, which simply discards the

uninteresting variables. Actual foldings can be much more selective than

this, ignoring variables only in parts of the state graph for example.

Assembly language programs themselves are extreme examples of folding

of their state graphs, in which every variable except the program counter is

ignored. The states correspond directly to the addresses of instructions

(program counter values) and the symbolic instructions label the transitions

from state to state. Throughout we label the edges corresponding to condi-

tional branches with the outcome of the branch. The folded state graph

directly defined by a program is a simple modification of the program's

flowchart, with the operations labeling the edges rather than the nodes.

Folding has several uses in the analysis of programs using state graphs.

It allows finite representations of infinite state graphs. It may be used

to manipulate a state graph by unfolding it in some ways and refolding it

in others to get a more explicit or compact representation of interesting

sequences of operations. Last but not least, it provides a characterization

of the kinds of properties that can be analyzed using state graphs. The last

will be described next, using an example and then a definition.

Dijkstra's "critical sections" are a tool for coordinating asynchronous

parallel processes. They are defined in terms of four primitive operations:

P - set an interlock which prevents any other process from performing

the P operation until this process has performed a V operation.

V - Release the interlock.

A - Access the shared data structure protected by the P and V operations.

- Any other (irrelevant) operation.

A process is defined to be correct in its usage of these operations if and

only if its state graph can be folded into the following prototype:

-41-

start A

Figure 1

The node at the left represents the noncritical part of the program,

and the node at the right is the critical section. The correctness

criterion defined by the prototype is that a program may not access the

shared data or do a V operation if it is not in its critical section, that

it may not halt or do a P operation when it is in its critical section,

and that the P and V operations switch the program between the noncritical

and the critical sections.

As suggested by this example, the properties which can be verified

using state graphs are those which can be stated by defining a prototype

into which any correct program should be foldable. All program verifica-

tion techniques must eventually appeal to intuitively acceptable standards

of what makes a program correct. The prototypes play this role here. The

objective is not to verify the prototype in any way, but rather to decide

if a given program can in fact be folded into the prototype.

The technique for verifying that a program can be folded into a given

prototype is divided into three steps:

A) Convert the program's symbolic source deck into the flowchart-like

folding which ignores all variables but the program counter.

B) Transform the initial folded graph to represent distinctions in the

values of "critical" variables and to eliminate superfluous detail.

C) Attempt to fold the transformed graph into the prototype and report

success or failure. If failure is reported, identify the portions of

the program which could not be folded into the prototype.

The details of automating these three steps are discussed in section III.

2J

-42-

There are, however, several points which deserve further discussion.

Referring back to the critical section prototype, note that all

"uninteresting" operations were lumped together in a single operation

labeled e . Note also that the prototype allows such operations to be

freely interspersed with the interesting operations in any legal sequence.

This is a common phenomenon in prototypes and deserves some special treatment

as it can be used to fold considerable uninteresting detail out of the state'

graph.

An operation is "unitary" if it appears in the prototype only on unit

a
loops. (A unit loop is a transition x + x which does not change the state.)

It is "uninteresting" if it is unitary and every state of the prototype has

such a unit loop. In the critical section prototype, A is a unitary operation

and e is uninteresting. An edge of the program state graph is unitary or

uninteresting if it is labeled with a unitary or uninteresting operation.

Uninteresting edges are also called null edges. Such edges provide a special

opportunity for folding the program state graph as follows:

1) Any two nodes connected by a unitary edge may be folded together.

The resulting graph will be foldable into the prototype wherever

the original was, because the two states in question must fold into

the same state of the prototype due to the unitary edge connecting

them.

2) Once the above folding has been accomplished, all unitary operations

in the program state graph appear as unit loops. For uninteresting

operations these loops may be eliminated entirely since it is known

that they will be allowed in the prototype.

It should be noted that the general folding technique described above

can introduce spurious illegal sequences if an illegal sequence already exists.

I

-43-

For example, consider the effect of adding a null edge in parallel with

the V edge in the prototype graph of Figure 1. This corresponds to a

program's illegally jumping out of its critical section without releasing

the interlock. Theillegal sequences generated contain an excess of P

operations. If the two states are folded together then spurious illegal

sequences containing an excess of V operations are also generated.

The algorithms described in Section III avoid the generation of

spurious sequences by constraining the application of folding. For example,

the "only successor" rule allows folding of nodes x and y with the null

edge x y whenever y is the only successor of x. Such restrictions make

it considerably easier to reconstruct the illegal path in the source pro-

gram given an illegal sequence in its folded version.

The need for step B, which unfolds and refolds the state graph is

best illustrated by an example. The following fragment of an Algol program

contains a disguised critical section.

for I: = 1 step 1 until 3 do

begin

if I = 3 then V;

if I = 2 then A;

if I = 1 then P;

end;

Figure 2

Here P, V, and A are the primitive operations to be matched against the

critical section prototype defined earlier. The initial state graph generated

-44-

from this program fragment has the form:

I -1 < 1 I < 3 I 3 I 2 I # 1 I -1 + 1

- -_ >6) y>_ O >0 >
> 30 V A v

Figure 3

In this example the variable i is critical in the definition of the

actual as opposed to apparent flow of control. If the graph were simply

folded to eliminate all operations except for P, A, and V the result would be:

P,V,A, or

Figure 4

This graph cannot be folded into the prototype. Thus the graph must be

unfolded to reflect the distinct values of I, giving the intermediate result:

I - 1I <3 I 3 I 2 I 1 P (I 1)

*- > 0 - >° >o >0 >0 _>
1I < 3 I 3 I = 2 A I 1 (I 2)

- Z + 1 ~~~~~~~~.I <3

I~~~~~ CO)W 0 ()>

tI e I + 1 I < 3 I : 3 V I ~ 2 I ~ 1 (I 5 3)
C' >0-O >0 >0 >0 , (3

I- eI + 1 I > 3
(L= 4),~0,). .. (-T-- 4)

Figure 5

If this second graph is folded by deleting insignificant operations,

the result is

.. p >A P > m V >O >

Figure 6

-45-

which obviously does fit the prototype.

The point of this example is that the initial folded graph may need

to be unfolded for certain variables which play a critical role in deter-

mining the sequences of significant operations. The unfolding is done by

splitting selected nodes of the graph into separate copies for each

different value of the critical variable. This implies that a finite set

of such values must be known. This is a restriction on the method, but

fortunately critical variables usually satisfy the restriction.

The splitting procedure has been automated with one major omission:

the identification of critical variables. This is accomplished manually

by input to the analysis program. Overlooked critical variables are

quickly found since they result in spurious paths which cannot be folded

into the prototype.

One major class of critical variables is identified automatically.

This is the class of subroutine returns. State graphs represent sub-

routine structure as follows. With each subroutine is associated a variable

which identifies the points at which the subroutine is called by distinct

values. This return variable is set before the subroutine is called, and

the subroutine returns to the proper point by branching on the value of the

return variable. The return variables are automatically considered to be

critical by the analysis procedure, with the result that a separate copy

of the subroutine is inserted at each point of call by splitting proce-

dure. The finitude restriction on critical variables implies that recursive

subroutine calls cannot be handled.

The final step, folding the transformed state graph into the proto-

type, is accomplished by a straightforward matching process which defines

the desired homomorphism. The process starts by matching the starting

state of the program to the starting state of the prototype, and extends

the matching to the rest of the graph by propagating matches based on the

-46-

aahomomorphism rule that x a y implies f(x) a f(y). It is simplified by

requiring that the prototype be deterministic. This is easily accomplished

manually, either by inspection or by use of the power set techniques

borrowed from the theory of finite automata.

III. Techniques

The ideas and methods of the previous section have been implemented

in a program called TRACE. TRACE is divided into three independent

sections which sequentially perform the major steps in producing a compact

state graph for a given object program. BUILD reads the source code and

generates an initial state graph. SPLIT resolves questions which arise

when the program branches on the values of critical variables. CLEANUP

performs final folding and outputs the graph in various forms suitable for

external analysis, and may also immediately verify that the object program

does or does not conform to the order-of-operation rules specified by the

user-supplied prototype graph.

1. Building the State Graph.

The only major inputs to TRACE are the source code of the object

program and a list specifying which instructions or operations in the

source code are to be considered interesting. This list must always

contain all instructions which affect the flow of control within the

object program such as jumps, branches, subroutine calls and returns, and

program stops and ends. Additional items on the list will depend on the

application. In the table interlock example, the operations which reserve,

access, and release the table will be included.

In the present version of BUILD if these operations of interest are

not explicitly coded in one or two lines or with a macro, the source

code must be "doctored" by the user; a unique instruction must be invented

-47-

to represent the interesting operation, and must be inserted at the

appropriate points in the code and included in the list of interesting

instructions. Occasionally unobvious code may have to be rewritten;

for example, table jumps must be replaced with explicit branches.

BUILD reads the source code one line at a time selecting those

lines which have location labels or whose op-code is on the interesting

instruction list, and ignores all other lines. For these interesting lines,

appropriate additions are made to the state graph. Labels cause the

creation of a new node corresponding to the state of the machine just

before the labeled instruction is executed. This new node then becomes

the "current" node. These program locations labels are attached to the

nodes so that later the user may easily see which nodes correspond to

which sections of the source code. Jumps cause the creation of a null

edge between the current node and the node corresponding to the location

jumped to, and the creation of a new current node. Application-dependent

interesting actions such as semaphore operations cause the creation of an

appropriately labeled edge from the current node to a new node corresponding

to the new state of the machine after the interesting action has taken

place.

BUILD may be told by the user to keep up with the value of certain

critical variables which affect the flow of control within the object

program. When these variables are set to a value in the object program,

this information is attached to the currect node. When the program

branches on the value of these variables, BUILD creates two null edges

from the current node, and tags the edges with the condition under which

each path is taken. For example, if the variable SWITCH has been

designated critical, the segment of source cdode in figure 7 will result

in the graph segment of figure 8.

-48-

branch to LOCi if (acc) > 0

reserve table J

SWITCH 1

unconditional jump to LOC2

(uninteresting code)

SWITCH 0

branch to LOC3 if SWITCH m 0

release table J

LOC3

Figure 7

(LOCl)

SWITCH =

SWIT

(LOC3) I

SWITCH =1

SWITCH = 1

Figure 8

JPOS

P

LOAD

STORE

JUMP

LOC1

J

1

SWITCH

LOC2

0

SWITCH

LOC1 LOAD

STORE

LOC2

LOAD

JZERO

V

SWITCH

LOC3

J

CCH = 0

-49-

When a branch is made on a value which BUILD has not been told is

critical, two untagged edges result, and the state graph contains a non-

deterministic branch such as the one from the top node of figure 8. BUILD

automatically handles subroutine calls and returns as setting and branching

on, respectively, the value of a generated critical variable.

2. Splitting.

The directed graph produced by BUILD contains complete information

about the sequence of operations which the ojbect program does, or may,

perform, but it will generally be too large and too complex to be useful.

The folding techniques for reducing the size of the graph are described in

III.3. The complexity arises because of the conditional edges which result

from subroutine returns and from branches on other critical variables.

SPLIT resolves such conditional paths by creating two or more copies of the

graph segment corresponding to the (possibly) different sequences of actions

performed as the critical variable takes on its range of values. This

splitting process begins at the node from which there are conditional edges

and propagates backward along the directed graph to the nodes at which the

critical variable acquired known values. For example, from the graph

segment of figure 8, SPLIT will produce the graph segment of figure 9.

Figure 9

-50-

SPLIT keeps a pushdown stack of "question nodes", nodes from which

there are conditional edges. This stack is initialized to contain all the

question nodes in the graph originally produced by BUILD. SPLIT begins each

execution of the splitting algorithm by considering the top node of the

stack. If it does not have associated with it answers to all of the questions

on its outgoing edges, this node is split, the questions propagated back onto

its incoming edges, and all of its predecessor nodes are pushed onto the

stack. Loops are handled by marking each copy of the split node with the

corresponding value of the critical variable. When the stack is empty,

SPLIT terminates.

3. Folding.

The initial state graphs produced by BUILD can be quite large; for

example the graphs representing operating system programs written in

CDC6600 periphial processor assembly language average about one node for

every three lines of executable source code, and about 1.5 edges per node.

(These ratios will probably vary depending on the source language and nature

of the program.) The splitting algorithm greatly increases the number of

nodes. Thus both to conserve memory and in order to reduce the amount of

work to be done by subsequent portions of TRACE, it is imperative to reduce

the size of the graph as much as possible at each stage of the process. This

reduction is accomplished by folding. Folding may introduce new traces into

a graph, and although the general folding rule given in Section II will never

introduce spurious illegal traces into a graph which did not already contain

at least one, the folding rule can be modified so as never to introduce them.

It can be easily shown that applying the following two rules will never

introduce spurious illegal traces: i) If node I is directly connected to

node J only by a null () edge from I to J, and either a) I has no other

-51-

successors, or b) J has no other predecessors, then I and J may be combined.

ii) If there is a null edge from node I to J and a null edge from J to I,

then I and J may be combined.

In addition, null edges from a node to itself, and one of a pair of

identical edges between the same two nodes, may be eliminated. When two

nodes are combined, location labels and information regarding the value of

variables attached to either of them are attached to the combined node, with

duplications eliminated. Nodes connected by a conditional edge are never

combined.

The above rules are incorporated into a routine called FOLD which applies

them in turn to each node in the graph. If any combinations were made in a

pass through the whole graph, then FOLD again applies the rules to every

node, and the process is repeated until a pass has been made in which no

new combinations occurred. Applying FOLD to the graph segment of figure 9

produces the graph segment of figure 10.

(LOCl, LOC2)

X->© (LOC2)

VL(J)

(L0C3)<

Figure 10

-52-

FOLD is applied to the graph as soon as BUILD has finished and is

usually able to cut its size in half. During the execution of SPLIT,FOLD

may be called whenever memory gets crowded, and is always called when SPLIT

has finished. It has been found that at this point even very large object

programs will be represented by graphs having no more than 40 nodes, and

usually less. It therefore becomes practical in CLEANUP to apply folding

rules with more sophisticated criteria for combining states:

iii) Any two nodes whose sets of outgoing edges are identical, with

respect to both labels and successor nodes, may be combined.

iv) If there is a closed path, no matter how long, consisting entirely

of null edges from a node back to itself, then all the nodes along

this path may be combined into one node. (Notice that this is a

generalization of rule ii; in rule ii the length of the path is just

two)

When all of the folding rules have been applied to every node in the

graph without any new combinations occurring, the graph is completely folded.

CLEANUP will then output the final graph and may also try to match the graph

against a prototype graph.

IV. Applications and Conclusions

The program called TRACE, described in the previous section, is an

experimental version of what we hope will become a useful tool for program

verification and system debugging. Its primary purpose so far has been to

verify that the techniques described in this paper are in fact practical. In

its present form TRACE is written in FORTRAN and requires 42008 words of

memory on a CDC 6600. From the runs that have been made, it appears that

TRACE requires less than 2 seconds of central processor time per 100 lines

of source code to produce the final state graph for a program.

-53-

Despite its experimental nature, TRACE has been used to verify one

aspect of the UT2 operating system used at the University of Texas Compu-

tation Center. TRACE has been run on 6 of the system programs which access

the Job Status Table to verify that they all adhere to the semaphore protocol.

It can be used in its present form to verify that all programs adhere to

the correct protocols for reserving channels, disk and ECS space, etc.

The state graphs produced by TRACE are of use in connection with a

major performance measurement and evaluation project currently in progress

on the UT2 operating system. This project includes an event driven trace

which eventually produces directed graphs representing sequences of actions

actually taken by programs including system programs (3). All these events

can be detected by TRACE in the source code of the same system programs. Thus

the graphs produced by TRACE can be used to preset the event trace. In

addition, comparison of the two graphs produced by these two different methods

helps to verify each method and may indicate sections of source code seldom

or never executed, sections which are heavily used, etc.

Most of the problems encountered so far in implementing the techniques

described in this paper arise in the input and recognition phase in which the

initial state graph is produced from the source code. Not all interesting

actions are automatically recognized. The value of critical variables may be

set by an input statement. At present such problems must be handled by

modifying the source code. An average of about one modification per 75 lines

of source code have had to be made by hand to enable TRACE to correctly recognize

all interesting operations.

Another area for future research is language independence. The fact that

source code operations which are to be considered interesting are input at

run time indicates that TRACE could be run on programs written in different

source languages with little or no modification, but this hypothesis has yet

-54-

to be tested.

A great deal of research needs to be done to determine just how many

interesting properties of programs can be stated purely in terms of the

sequences of operations they perform, and for those properties which cannot

be so described, whether or not any state graph techniques can be applied to

them.

REFERENCES

1. Dijkstra, E. W. Cooperating Sequential Processes, In Programming
Languages (F. Genuys, ed.) Academic Press (1968), 43-112.

2. Hedetniemi, S. T. Homomorphisms of Graphs and Automata. Technical
report, Communication Sciences Program, The University of
Michigan, 1966.

3. Sherman, S., Howard, J. H., and Browne, J. C. A Comparison of
Deadlock Prevention Schemes using a Trace-Driven Model. Sixth
Annual Princeton Conference on Information Sciences and Systems,
Princeton, N. Y., March 1972.

-55-

III. Redundancy Techniques: Roll-Back and Recovery

Introduction

Rapid and smooth restoration of a computing system after an error or

malfunction is always a major design and operational goal. Hardware failur-

es can be detected and corrected by suitable diagnostic and maintainability

procedures. Software design errors could be hard to detect but once detect-

ed corrective procedures would be easy to implement. The majority of opera-

tional failures occur in the hardware processors, memory, and I-0. On-line

diagnosis and use of error checking codes, have been effective in reducing

the effects of these hardware malfunctions. After the malfunction is correct-

ed, the problem arises as to where to restart the program. It may not always

be feasible to run the entire set of programs again from the start, either due

to time limitations or since the required data has been modified. A better

strategy would be to have a number of roll back points (or check points) with-

in the program at which certain program and processor status information could

be saved. If a fault or malfunction is detected, the program is rolled back to

a previous check point where the system is known or proven to be in good opera-

tional condition.

Various strategies are used to reduce the impact of interruptions or mal-

functions both to the system and to the users. Operating System 360 as used

in Model 65 is equipped with a set of programs called the Recovery Manage-

ment Support which embodies a number of methods. The recovery methods de-

pend upon the nature of the malfunction. In the I/0 area, re-reading of input

data with parity errors is common. If error subsists even after repeated retries

the system could consider reconstruction of damaged data (error correction) if

possible. In the case of the processor errors, the instruction may be retried

if feasible (i.e., if its operands were not modified by the instruction). The

most important technique is to provide check points in all programs so that pro-

grams could be rolled back to a previous state and computation resumed.

If an error is detected while a program is being processed and if the

error cannot be corrected immediately, it may be necessary to run the entire

program again. The time lost in running the program again may be substantial

and in some real time applications (notably aerospace and process control)

critical.

-56-

At any stage in the processing of a program certain information is

required by the program for computation to proceed successfully. A state

at any stage in the processing of a program, will be defined as the informa-

tion (variables, data, programs..) which may be subsequently used by the

program. Saving the state of a program is the process of making a copy of

the state in secondary storage. Clearly, the length of time spent in saving

a state is proportional to the amount of information that has to be copied.

Loading a saved state is the process of setting all the registers, primary

and secondary storage etc. to the values stored in them when the state was

saved. 'Recovery time can be reduced by saving states of the program at

intervals, as the program gets processed; if an error is detected the program

is restarted from its most recently saved state. If the states of the program

are saved too frequently, an unnecessarily large amount of time may be spent

in saving states. If the states of the program are saved too infrequently an

unacceptably large recovery time may result. The resolution of the tradeoff

is the subject of our discussion.

Only transient malfunctions are treated in this paper. It is clear that

permanent malfunctions cannot be treated by rollback alone, since, if a perma-

nent malfunction does occur and is detected, and the system starts recomput-

ing from a rollback point, the very same permanent malfunction will be detect-

ed again. On the other hand, rollback is a very useful tool for handling per-

manent malfunctions, when it is used with some other fault-tolerant technique

which effectively switches off the malfunctioning device. This is discussed

in greater detail below.

We will now discuss some areas where rollback can be profitably combin-

ed with other fault-tolerant techniques. The earliest attempts at obtaining ultra-
(4)

reliable systems attempted to achieve reliability through redundancy . Triple

Modulo Redundancy (TMR) and other methods of fault-tolerant computing using

several identical computing units, operating in parallel on the same data, with

a vote taker, (see figure 1) have been discussed in great detail (5, 6,7) A

slightly different system, using TMR and stand-by spares which are switched

in when needed, has been described by Mathur and Avizeinis(. This system

INPUT

INPUTT r TTITPTTT

INPUT OUTPUT
vote-taker

Triple-Modulo Redundancy

Figure 1

-57-

I OUTPUT

OUTTPUTTNL II

III

OUTPUL

-58-

is called the hybrid system. The operation of the hybrid system, in brief,

is as follows: three identical computing units are operated in parallel, and

a vote-taker compares the outputs of each unit with the others (see figure 2).

If the output of one unit does not tally with the other two, it is switched out

and a stand-by spare is powered on to take its place. However, after the

standby unit is powered on, the registers, memory, and program status word

must be loaded with the appropriate information, before processing can con-

tinue. One way of doing this is to have rollback points; the three units, in-

cluding the stand-by unit are loaded with the information saved at the last

rollback point, and processing continues from there.

Any system which uses spares is confronted with the problem of load-

ing the powered-onspare. One method for solving this problem is to use

rollback. Rollback at periodic intervals was used in the SABRE 7090 System,

and in the IBM 9020 System used by the FAA.

We will make the assumption that if an error occurs while a task is be-

ing processed, then the error is diagnosed before the task is completed. Sup-

pose an error occurs while a task is being processed and suppose it is not

diagnosed; if there is a rollback point immediately after the task is complete,

then the information which is saved at the rollback point will be faulty. Sub-

sequently, if the error is diagnosed, this faulty information will be loaded,

and the computer will continue processing from the rollback point; eventually

the same error will be diagnosed again.

If the same error is detected after rolling back, the system should con-

clude that there is either a permanent malfunction, or that an undiagnosed error

occurred before the last rollback point. The program may be rerun from the very

beginning and if the same error is detected again, one may reasonably conclude

that a permanent malfunction has occurred, and a reconfiguration made to

switch off the faulty unit.

Rollback can be used in two quite different ways. In some systems,

the programmer preanalyzes his program and specifies where rollback points are to

be inserted. He may decide where to insert rollback points in either an intui-

tive manner or by making estimates about relevant parameters in his program

(such as the maximum time that may be required to process a given task in the

vote taker

STAND-BY

SPARES

Hybrid System.

Figure 2

-59-

SPARE 1

I .
II
II

-60-

program), and by using a mathematical model to aid him in the decision making.
(14)

In other systems rollback points are inserted at periodic intervals , irres-

pective of the particular programs being run. We are concerned with the former

case, where rollback points are tailor-made for a particular program.

The amount of information that has to be saved so as to be able to re-

start a program at that point may vary widely from one point in the program to

the next. We assume that there is a sufficient amount of secondary storage to

store the state of a program at any time. The secondary storage used may be a

(9)
large core storage unit , drum, disk, or even magnetic tape. The "cost" as-

sociated with a rollback point is the time taken to save the state of the system

at that point; the time clearly depends on the amount of information that has to

be stored and on the type of memory used to store the saved state. These fac-

tors are included in the mathematical model described later.

This paper uses a graph model to describe a program. Graph models

have been dealt with extensively in the literature, see 10, 11, 12, 13. Program-

mers have traditionally used flow charts (which are graphs of a kind) as aids

in programming. In this paper, we assume that a programmer can analyze his

program (or flow chart), and represent it as a sequence of tasks. A task may

be an instruction, or several instructions including conditional branches. In

our paper, we will generally make a coarse partition of the program into tasks,

i.e., each task will consist of several instructions and will involve a substan-

tial amount of processing time; the range implied by "substantial" depends on

the model used and will be discussed later.

The sequence of tasks processed may change from one run of the program

to the next due to conditional branch statements. However, we shall assume

that no task is repeated; if a task is iterated in a program, each iteration of

the task may be considered a distinct task, or the iterations may be coalesced

in the manner shown below. Consider the flowchart in figure 3, where a task

is iterated n times. The iterations may be coaelesced into one task, or into a

sequence of one or more tasks; each of the tasks in the program graph may cor-

respond to several iterations of the task in the flowchart.

All of the iterations of
task 1 are subsumed with-
in task A.

Task B subsumes some
1

iterations of task 1, and
task B2 subsumes the re-
maining iterations.

Each task C.
1

subsumes some
iterations.

-61-

Figure 3

.. '.,

I

I

I

I.I
I

l

-62-

The algorithm makes use of estimates made by the programmer, on

the maximum amount of processing time required by a task. Admittedly,

it is impossible to design an algorithm, which, given any program, deter-

mines the maximum time that may be required to process each task in the

program. However, it is possible for a programmer, to obtain estimates

of worst case bounds for his particular program. Indeed, in many computer

installations, programmers have to submit estimates of the maximum time

required to process their jobs. It is important to note that in installations

where a programmer is allowed to specify rollback points, he must make

estimates of this sort, and then make intuitive decisions based on these

estimates. Our objective is to clarify, quantify and formalize his decision-

making process. The accuracy of the decisions (intuitive or formalized)

clearly depends on the accuracy of the estimates.

Obtaining a program graph from a program is not inexpensive. The

programmer must analyze his flowcharts and make estimates of several para-

meters. Many (probably most) programs are short enough so that no roll-

back points at all are required. In many other cases, the advantage gained in

having tailor-made rollback points is not worth the time spent by a programmer

in obtaining a program graph; in these cases rollback points at fixed inter-

vals are sufficient. However, there are some cases, where the costs of slow

error recovery are high, where the system runs a comparatively small set of

programs over and over again, and where the advantage ot tailor-made roll-

backs outweighs the time spent by the programmer in constructing the program

graph. We are concerned with cases of the latter type.

The decision to insert rollback points clearly depends on the importance

of speedy error recovery, i.e. the penalty incurred if a program does not run to

completion in a prescribed amount of time. In some real time applications, it

is critical that a program run to completion in some given amount of time, where-

as, in most commercial applications the loss incurred if an error occurs is just

the computer time wasted.

-63-

A programmer has to analyze his flow chart and represent it as a

sequence of tasks (program graph) only once. Hence, the greater the

number of times a program is run, the more the benefit of tailor-made roll-

back points. So, the decision to have tailor-made rollbacks clearly de-

pends on the expected number of times the program will be run.

Programs with short processing times do not need rollback points

at all. Thus, a program that is worth analyzing for tailor-made rollbacks

must have three characteristics:

(1) The program must require a substantial amount of processing

time.

(2) The application of the program must be such that quick error

recovery is crucial.

(3) The same program must be run a large number of times.

-64-

Problem Formulation

A program will be represented by an tndirected graph where vertex i

corresponds to task i and edge (ij) exists if and only if task i is followed

by task j with non-zero probability.

Associated with vertex i of the graph is a real number t. which is

the maximum (or expected) time between the start and the completion of task i.

Associated with each edge (i,j) of the graph are two real numbers:

S.. and L... The state of the program soon after task i is completed and be-1)1j
fore task j is started (if task j is processed next) is described by the program

status word, register contents, primary and secondary storage contents and so

forth. The time taken to save (make a copy of) the state of the system at this

stage in the program in secondary storage, is Sij. We shall refer to Sij.. as
ii~~~~~~1

the save time. The time taken to load the state of the system from secondary

storage to primary storage is L...

At each edge (i,j) we may choose to insert, or to not insert a roll-back

point. If a roll-back point is inserted at edge (i,j) then after task i is com-

pleted, andif task j is to be processed next, the state of the system is saved '.

in secondary storage before task j is started and any prior state which has been

saved earlier is erased. Subsequently, if a transient error occurs, the program

is restarted at the most recently saved state.

We define the recovery time r at any point P in the program to be the

time taken to load the most recently saved state, and to rerun theprogram from

this state to P. If an error is detected at point P. the recovery time r is the

time "lost" due to the error. The question that we wish to answer is: Where

should rollback points be inserted?

There are several formulations of the problem. Three of the models are

discussed below. In all models we assume that if an error occurs while task i

is being processed then the error is detected before task i is completed.

, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~-- , - - - - - - - - . - - - - . . . -

-65-

Worst Case Design

Data: With every task i we associate a real number t., where t. is the maxi-
1 1

mum processing time that will be required by task i. L. and S.. are the maxi-
ii 1J

mum load and save times if a rollback point is inserted on edge (i,j). We are

also given M, the maximum recovery time.

Constraints: Insert rollback points so that at every point in the program the

maximum possible recovery time does not exceed M.

Objective Function: Minimize the maximum time (i.e. for the worst case) that

may be spent in saving states of the system in secondary storage.

Minimal Expected Save-Time Design

Data: Associated with task i is a real number t. where t. is the expected
1 1

time required to process task i. A real number p..i is associated with each
1J

edge (i,j) of the graph, where pi. is the probability that task i will be immediate-

ly followed by task j. L.j and Sij.. are the expected load and save times if a
il]

rollback point is placed on (i,j). We are also given M, the maximum expected

recovery time.

Constraints: The expected recovery time at any point in the program is not to

exceed M.

Objective Function: Minimize the expected time spent in saving states of the

system in secondary storage.

Minimal Expected Run Time Desiqn

Data: Pij is a real number associated with each edge (i,j) where Pij is the

probability that task i is immediately followed by task j. We associate a probabi-

lity Qi with task i where Qi is the probability that a transient error will occur

while task i is being processed. Given that a transient error does occur while

task i is being processed, let Yi be the time between the initiation of task i and

the occurrence of the error. Yi is a random variable; we assume that the probabi-
1

lity distribution function for Yi is known. Given that a transient error will not

i,j........
t ~ ~ - '_ '_ _ __-___ __ =

:~~~~~~~~~~~~~~~~~~~~~~~~~~ !
< . ,, _ _ . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ _

-66-

occur while task i is being processed, let t. be the time required to process
1

task i. t. is a random variable; we assume that the probability distribution
1

function for t. is known. We shall assume that the save and load times, S.
1 1]

and Lj.. are constants.
13

All events are assumed to be independent.

Constraints: None

Objective Function: Minimize the expected run time of the program.

A Comparison of the Different Formulations

A programmer can generally provide an estimate of the maximum

time that a task will require to get processed; he usually finds it more

difficult to estimate the probability distribution function for the processing

time required by any given task. For this reason, it is not possible to use

the minimal expected run time design unless a substantial amount of measure-

ment can be carried out on the program so as to estimate the distribution func-

tions for processing times of all the tasks.

The estimation of the probability that the program will branch in any

particular direction is also difficult, without substantial measurement. For

these reasons the worst case design is the most pragmatic method of design-

ing rollback points when there are few statistics available.

The best model to use depends on the function of the program as well

as on the information available.

The worst case design and tne constrained expected recovery time

design are discussed in this paper. The minimal expected run time design is

the topic of a subsequent paper.

We shall first consider worst case design.

Implementation

It is not possible to predict precisely how much processing time a giv-

en task will require. It therefore seems desirable to make insertion of rollback

............._ ___ _ _ . = . =, =_ . = _

...~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-67-

points a dynamic procedure; on some runs of a program it may be preferable

to have a rollback point on a particular edge while on other runs of the same

program (with different data) it may be preferable not to have a rollback point

on that edge. However, the procedure for making tne decision on inserting

rollback points should be simple so that the decision can be made in real

time with little overhead. The method suggested here fulfills these require-

ments.

We interrogate the recovery time (r) after each task completion

and use it as a basis for making the decision on placing rollback points.

r can be determined readily: Let D be the clocktime at the end of the last

rollback, L the time required to load the system at the last rollback point,

E=D-L, and "clock" the current clock time. Then

r = clock-E.

Suppose that at some point in the program the task just completed

and the task to be processed next are i and j respectively. Let r be the

recovery time at this point. We show that the optimal decision is to insert

a rollback point if r > B. and not to insert a rollback point if r B.., where

B..i is a constant. The set of Bij.. are computed before the program is run. When
1J ~~~~~~~1J

task i is completed and if task j is to be processed next, r is compared with B..

and a rollback point is inserted if r > B... If a rollback point is inserted, then
1)

E is updated. Task j is then processed. A block diagram is presented in Figure 4.

Task i is completed and
task j is to be processed
next r=clock-E

-68-

In general r will vary from one run of the program to the next, since the

time required to execute a task will depend on the input parameters. Hence

the insertion of rollback points will also vary from run to run of the program,

since the decision to insert rollback points is based on the value of r.

Definitions

If there exists a path from vertex i to vertex j then vertex j is said

to be a successor of vertex i. A vertex with no successors is called an

exit vertex.

For each vertex i in the graph we determine a function f. (r), for all
1

possible values of recovery time r, where f. (r) is the minimum time spent in
1

saving states of the system after task i is completed and before the comple-

tion of the program, in the worst case. Since we are using worst case design,

when predicting the amount of time required by a task i we always assume the

worst, i.e., that task i will require the maximum processing time t.. Similar-

ly, in predicting the branch that a program will take, we assume the worst, i.e.

that a program will branch such that the largest amount of time will be spent in

saving states of the system.

For each edge (ij) in the graph we determine functions gij (r) and

xij(r): g j(r) is the minimum time spent in saving states of the system after

task i is completed and before the completion of the program, in the worst pos-

sible case, if task i is followed by task j.

xij (r) is the optimal decision variable; x.,ij (r) = 1 if a rollback point

is to be inserted on edge (i,j) and x..(r)=0 otherwise.
1]

The Alqorithm We assume f.(r) = for all i, and r >M.
;

th 1
Initialization (0 step) Define f.(r) = 0, r • M, if i is an exit vertex.

1
Label all exit vertices. (Vertex i is labelled to show that the function f.(r) has

1
been determined for it)
th

k t h step, k = 1,2,3,

Determine if there exists any vertex which has all of its successors

labelled. If no such vertex exists, STOP, the algorithm terminates. If such

-69-

a vertex exists let it be vertex i.

Forall edges (i,j) compute gij (r) and xij (r) from

gij(r) = Si. + f. (Lij + tj) if r + t. >M

=min {f. (r+ t.), Sij + f. (Lij + t) } (1)
3 3 13 *3 13 j

if r + t. < M
3

1 ~~~~~~~~~~(2)xij(r) = 0 if gij (r) = fj (r+t.) (2)

= 1 otherwise; B.j is the value of r below which xij (r) = 0.
13 ~~~~~~~~13

It follows then that xij (r) = 0 forr < Bi.. and x ij(r) = 1 for r > B.
13 13 13 13

Then compute fi (r) from

f.(r) = maximum over all edges (i,j) of [gij (r) } for 0 < r < M (3)
1 1

Label vertex i to show that f. (r) has been computed.
1

If f (r) = Q for all 0 < r, STOP. There does not exist any feasible solu-
21 th

tion to the problem. Otherwise, go to the k + 1 step.

We shall show that the algorithm terminates when all the nodes in

the graph have been labelled. We may assume without loss of generality

that there is only one entry vertex to the program graph, i.e. there is only

one vertex which has no predecessors. Let the entry vertex be vertex num-

ber 1; then task 1 is executed immediately after the program is loaded. Let

the time taken to load the program initially be L . Then, the maximum recov-
0

ery time immediately after task 1 is completed is L + t and hence the worsto 1
case cost (time spent in saving system environments) will be fl (Lo + tl)

If fl (Lo + tl) = then there is no feasible solution to the problem.

We claim that the optimal decision rule for inserting rollback points

on edge (i,j) is given by xij (r), i.e., if the recovery time immediately after

task i is finished is r, and if task j is to be executed next, save the system

environment if and only if xi.. (r) = 1.

Lemma 1: The algorithm terminates when all the vertices in the graph have

been labelled.

-70-

Proof: Every subgraph of a circuitless graph is also circuitless. A cir-

cuitless graph has at least one vertex with no successors; this is true in

particular for every subgraph of unlabelled vertices, i.e., in every sub-

graph of unlabelled vertices, there is at least one vertex which does not

have a successor which is also an unlabelled vertex. All the vertices

without any successors at all are labelled on the 0
t h step. Hence, if there

exists one or more unlabelled vertices on the K
th

step of the algorithm, K=l,2, ..

then there must be an unlabelled vertex, all of whose successors are labelled,

in which case the algorithm will not terminate. Hence the algorithm terminat-

es only when all the vertices are labelled.

Corollary The algorithm terminates within n steps where n is the number of

vertices in the graph.

Theorem 1. The algorithm determines the optimal decision rules x, ,(r) for each
1J

edge (i,j).

Proof: We shall show by induction on the k
th

step that if vertex i is label-

led on the k
t
h

step, thenxij(r), gij (r) computed by eqs. (1), (2), (3) satisfy

the definitions given earlier.

Basis: If vertex i is labelled on the first step, then equations (1), (2), and

(3) reduce to

xij(r) = O if r+ t. < M

= 1 if r+ t. > M

f.(r) g.(r) = 0 if r + t. < M
1 gij]

= S. if r + t > M
* i] i~~~~~~~~

A rollback point must be inserted on edge (i,j) if r + t. > M, for otherwise
3

the recovery time after task j is completed may exceed M. A rollback point

need not be inserted on edge (i,j) if r+ t < M, and if vertex j is an exit
j

vertex. Hence, the theorem is trivially true for k= 1.

Induction Step Assume the induction hypothesis to be true for k = 1, 2, ...

t-l. We shall prove it to be true for k = t.

-71-

If a rollback point is inserted on edge (i,j) the maximum recovery

time after task j is Li.. + t.. If the recovery time after task j is complet-

ed is Li.. + t. , then the minimum time spent in saving states of the system
13 3

after task j, in the worst possible case, is fj (Lij + t.) by the induction hypo-
3

thesis. Si.. units of time are spent in saving the state of the system between

tasks i and j. Hence the minimum time spent in saving states of the system,

after task i is completed and iI task j is processed next, in the worst case is

Sij + f. (Lij + tj .)
JJ] 3

If a rollback point is not inserted on edge (i,j) the maximum recovery

time immediately after task j is r + t.. Hence, in this case the minimum time
3

spent in saving states of the system after task i, and if task j is processed

next, in the worse case, is

fj (r+ tj)

If r + tj > M, a rollback point must be inserted on edge (i,j)

if the recovery time after task j is completed is not to exceed M.

If r + t. • M, we have the option of not inserting a rollback point
I

(xij (r) = 0) in which case the minimum time spent in saving states of the system

in the worst case is f. (r+tj), or of inserting a rollback point (xij (r)=l) in which

case the minimum time spent in saving states of the system in the worse case

is Sij + f. (Lij + tj). The optimal decision xij (r) and the time spent in saving
3 1

states of the system in the worse case after task i and if task j is processed

next are clearly given by equations (1) and (2).

Since fi(r)= max[g ij (r) it follows that fi(r) is the minimum time spent

in saving staTes of the system after task i in the worst possible case. This

completes the proof of the theorem. Two examples, figures 5 and 6, have been

worked out.

Minimal Expected Save-Time Design

Let Pij be the probability that task j is followed by task i. Let t i , Li
._

-72-

and S.. be expected rather than maximum values. Let us redefine f. (r) as
13 1

fi(r) = I Pi gij(3a)
2 j

The algorithm used in the worst case design will determine the

optimal decision rules for the minimal expected time design with eq. (3)

replaced by (3a). The proof that the algorithm yields the optimal decision

rules is similar to the proof of theorem 1 and is not presented here.

Computation

The amount of computation is proportional to the sum of the number

of vertices and edges in the graph. The computation of fi (r) and gij (r) are
1 13j

straightforward, since all functions are of the form:

Kfor qp <r < q p+l' p = 1,2, .. T.., where the K are constants.

If all the data, t., Lij.., Sij.., M, in the problem are integers, then clearly
1 13 13

qp, p = 1, , T are also integers. Hence the maximum number of dis-

continuities T, in the functions f.(r) and gij(r), cannot exceed M.
1 1i3

The computation is most efficiently carried out by means of lists. The

list structures and list processing techniques used are described later.

-/3-

EXAMPLE 1

FIGURE 5

tl= 10

S12= 2 / 1L12
=

L =3
12 S =2

15

t=15
$2~= 15 \L 1 5 =2

S24 2 S =324 23

L 24
=

1 L23 3

t 4 10 t3 =5
4 3

S =-1 S36 2
46 36

L = 1 L36 =2
46 3 60 t

5
= 20

t6= ~~~~~~~~~~~~~~~~~~5
t =5
6

57 1
S67 = 2

L67 = 2
L57 = 1

t
7

= 10

M= 25

-74-

SOLUTION TO EXAMPLE 1

th
Initialization (0 Step)

There is only one exit vertex (i.e., a vertex without successors),

viz. vertex 7.

Define f7 (r)= { 0 for 0 < r • 25

{ for 25 < r

Label vertex 7 (with a check) to show that the f function for ver-

tex 7 has been determined.

1S t Step At this stage we note that only vertex 7 has been labeled. We

note that vertices 5 and 6 have all their successors labelled.

Compute g67(r), x6 7 (r) and B67 from equations (1) and (2).

g 6 7 (r) = S67 + f (L67 + t7) if r + t > M
67 ~ 67 7 67 7 7

min [f (r +t7), S67 + f (L67 + t7) i f r + t < M
7 17 67 7 67 77

S67 + f7 (L67 + t7) = 2 + f7 (2 + 10) = 2 + f7 (12) = 2

f7 (r + t 7) = 0 for 0< r < 15

o for 15<r

Hence
g6 7 (r) = { 0 for 0<r <15

2 for 15<r <25

Compute x67 (r) from
67

x6 7 (r)= if g6 7 (r) = f7 (r+t7)

1 otherwise

Hence x67 (r)= f(0 for 0<r •15
67

{1l for 15< r < 2 5

and B67= 15
67

We next compute f6 (r) from:

f6(r) = maximum over all edges (6,j) of {g6j . (r) 3

-75-

Since there is only one edge (6,7) leaving vertex 6, we have

f (r) g 6 7 (r) for r25
6(r)

Hence f6(r) = {0 for O<r15

{2 for 15<r<25

for 25<r

Label vertex 6 to showthat f6(r) has been determined.

2 Step

Now we compute g5 7 (r), x5 7 (r),'B 5 7 from equations (1) and (2),

since vertex 5 has all of its successors labelled.

g5 7 (r) = {57 + f7 (L5 7 + t7)ifr + t 7 > M

mrin f7 (r+t 7 S5 7 + f7 (L5 7 + t 7 if r + t7 M

S5 7 + f (L57 + t7) = 1+ f7 (1+ 10) = 1+ f7 (11) = 1

f (r+t7) = for 0 < r 15

for 15 < r

Hence g5 7 (r) = { 0 for O<r <15

{ 1 for 15<r525

x57(r) = { 0 for 0<r •15

{ 1 for 15<r •25

B. = 15B57

We next compute f5 (r) from

f5 (r) =max over all edges (5,j) of {g 5 j .(r)
Since there is only one edge (5, 7) out of vertex 5, we have f5(r) = g 5 7 (r).

Hence f5(r) = {0 for 0<r 15
.5

for 15 < r< 25

for 25 <r

Label vertex 5 to show that f 5(r) has been computed.

-76-

3 Step

At this point, vertices 5, 6, and 7 have been labeled. We note that

vertices 3 and 4 have all their successors labeled.

We compute g 3 6 (r), x36(r) and B36
36 36

S36+ f6(L36+t6)= 2 + f6(2 + 5)= 2 + f6(7) = 2

f6 (r+) = 0 for O<r=10
6 6

2 for 10<r< 20

{ for 20 <r

Hence g
3 6 (r) = { 0 for 0<r<10

{ 2 for 10 <r <25

Since g36(r) = f (r+ t) forr 20,36 6 6
we have x3 6 (r) = { 0 for O < r 20

{ 1 for 20< r 25

and B =20
36

We now compute f3 (r) and since there is only one edge going out of node 3,

namely edge (3,6), we get f3(r) to be the same as g3 6 (r).3 3
Hence f3 (r) = 0 for 0<r 510

2 for 10<rs25

co for25<r

Label vertex 3 to show that f3 (r) has been determined.3

4
t h Step.

We note that vertex 4 has all of its successors labelled. Hence we

similarly compute g4 6 (4), x 46(r) , B46 and f4(r)
46 46 ~46 4

g 4 6 (r) = {0 for 0 <r 10
{1 for 10 <r<25

x (r) = 0 for 0<r<10

-46... 1 for lO <r525
t ---- -- -~~.- - - .-- ----------___ _ _ ___ __ ._ __ _ __ -- - - - - - -. -- - -_ _ _ _ ________________________

-77-

B4 6

f4(r)

=10

= 0 for 0<rQ10

1 for lO<r<25

l for 25<r

Ith
5 Step

At this stage vertices 3,4,5,6 and 7 have been labeled. We note

that vertex 2 has all of its successors labelled. We now compute g2 3 (r), x23(r),

B2 3 ·

S23 + f3

f3 (r + t3)

Hence g2 3 (r)=

(L23 + t3) = 3+ 5) = 3+ f
3
(8) = 3

= { for O< r <5

2 for 5<r 20

- for 20 <r

{O for O <r 5

2 for 5<r< 20

3 for 20<r<25

x23(r) {0 for 0< 0<r<20

1 for 20<r< 25
*1

B23 = 20
23Similarly, we get

Similarly, we get.

g2 4 (4)

x24(r)

B2 4

{1 for O<r<15

{3 for 15<r• 25

=- {Ofor O< r < 15

T1 for 15<r<25
= 15

-78-

Hence f (r)
2

We label vertex

6
t h

Step

max {g
2 3

(r), g2 4 (r) I

1{ for O<r•5

2 for 5<rs15

3 for 15 <r•25

2 to show that f2(r) has been computed.

At this stage vertices 2,3,4, 5,6,7 have been labelled. We note

that vertex 1 has all of its successors labeled.

Hence we compute g1 2 (r), x1 2 (r), B12 and g1 5 (r), x
1 5 (r), B15.

g 1 2 (r) = { 3
{ 5

x 1 2 (r) = { 0
- {l

B12 = (10

* g1 5 (r) = 1

3

xls (r) = I0
1

B 1 =5B15=

Hence f (r) = max
1

for O<r<lO

for 10 <r•25

for O<r<l0

for 10 <r <25

for 0 <r< 5

for 5 < r<25

for O< r< 5

for 5<r•25

{g 12 (r), g1 5 (r)I:

for 0<rl10

for 10<r•25

for 25<r

Label vertex 1.

- - - -.

r ~-. …-…~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4 _,~.....=.........…...:..

-79-

7 t h Step

Since all the vertices have been labelled the algorithm terminates.

To summarize the solution to the problem:

The breakpoints are: B12 =10, B15 5, B =20, B24=15, B46= 10
12 15 23 24 46

B36 =20, B67=15 B57=15

Let the time L taken to load the program initially be 1 unit. Then
o

the time spent in saving system environments in the worst case is

f. (L + t.) = f. (11) = 5 units. However, the insertion of rollback points will
1 0 1 1

be dynamic as shown below.

Suppose that in a given run of the above program tasks 1,2,4,6 and 7

are executed in sequence, and suppose all tasks take 3 units of time. Then

no rollback points will be inserted. If on another run of the same program,

the same tasks, 1,2,4,6 and 7 are executed in sequence, and all tasks that

take 5 units of time, a single rollback point will be inserted on edge (4,6);

i.e. the system environment will be saved after task 4 is complete and before

task 6 is initiated. If on yet another run of the same program, the same tasks

are executed, and each task takes its maximum time, i.e. task 1 takes 10 units

of time, task 2 takes 15 units of time etc., rollback points will be inserted

between tasks 1 and 2, 2 and 4, 4 and 6, but not between 6 and 7. Hence, we

see, that real-time decisions are made as to which edges are to contain roll-

back points; these decisions are clearly a function of input data. However,

even though the insertion of rollback points is dynamic, the implementation of

the algorithm is very simple, and requires negligible overhead, once the break-

points B.. are determined. Note that the breakpoints B.. themselves are not a

function of input data.

-80-

Example 2 Figure 6

i

12t = 2

L12 = S12= 2

t2 = 9

M=10

-81-

Solution to Example 2, Fiqure 6

0 Step Vertex 2 is an exit vertex.

Put f(r) = {0 for 0<r<10

{o for 10 <r

st
1 Step Since vertex 1 has all of its successors labelled, we find

g1 2 (r) and fl(r).

f2 (r + t2) = _0 for 0<.r< 1

- for 1< r

12 + f 2 (L1 2 + t2) = 2 + f2 (2+ 9) = 2 + f2(11) =

Hence g1 2 (r) = {0 for 0 < r<l

for l<r

Clearly fl(r) = g1 2 (r), since there is only one edge out of vertex 1.

Letthe time L
0

taken to load the program initially be 1 unit. Then,

since f (L + tl) = f (1 + 2) = , there exists no feasible solution to
1 '0 1 1

the problem.

The Code for the Algorithm.

A graphical example for computing gij (r) is shown in Figure 7, and

of f.(r) is shown in Figure 8.
1

Consider the problem shown in Figure 9. The input data is of the

form shown in table 1. The first row, for instance, of table 1 states that

task 1 may be succeeded by task 2, and L12= 1, S12= 1.

Three linked lists are used for storing information. They are called

the NODE, EDGE and FUNCTION lists. Each cell in the NODE list has five

fields (table 2). Cell (row) 3 of table 2 states that vertex 3 has 1 (content

of COUNT field) successor; the list of predecessors of vertex 3 starts in

cell number 2 (content of TOP field) of the EDGE list; the list of succes-

sors starts at cell number 4 (content of BOTTOM field) of the EDGE list;

-82-

the estimated maximum time of task 3 is 10 units; FLINK points to the cell

Ain the FUNCTION list where the first element of the f (r) function is stored.
3

Each cell in the EDGE list has seven fields (table 3). PREDECESSOR

NODE and PREDECESSOR LINK fields are used to keep a linked list of the

predecessors of a node. SUCCESSOR NODE and SUCCESSOR LINK fields are

used to keep a linked list of the successors of a node. Forinstance the

first cell in the list of predecessors of vertex 3 is cell number 2 of the EDGE

list. The PREDECESSOR NODE field of cell number 2 of the EDGE list is 2,

since vertex 2 is a predecessor of vertex 3. The PREDECESSOR LINK

field links the list of predecessors. The LOAD and SAVE TIME fields are self

explanatory, the load time of 3 and the save time of 3 in the second cell of

the EDGE list refer to edge (2,3). GLINK points to a cell in the FUNCTION

list where the first element of the g2 3 (r) function is stored.

The f () and g () functions are step functions. They are stored

by storing the breakpoints. For instance, a step function and the method of

storing it as a linked list are shown in Figure 10. The f and g functions are

stored as linked lists; each cell in the FUNCTION list has three fields: X, Y,

and XYLINK.

Note that a task graph with M nodes and N edges needs only N+M

cells for the NODE and EDGE list (A graph with 1000 nodes and 3000 edges

needs only 4000 cells). The size of the FUNCTION LIST varies; the f and g

functions are computed when required and the storage occupied by the f and

g functions are returned to free storage when they are no longer required.

This methodof storing the f and g functions is economical and allows

for easy computation. For instance, evaluating f.(r) from f (r) =
1 i

max { gij (r), ... ,gij (r) I can be done readily by merely inspecting the

points of discontinuity i.e. the contents of the X and Y fields of the cells) of

g1 (r) ,g(r)
ij1 lip

-83-

Experimental Results

The algorithm has been coded in FORTRAN and run on a CDC 6600.

Thirty problems were generated using the random number generator on the

CDC 6600. Each problem had roughly 200 nodes and 400 edges. All prob-

lems were solved in less than 0.11 seconds. The computational results are

shown in table 4.

Conclusions:

The rollback problem has been described. Differentmodels for the

rollback problem have been compared and an optimal algorithm for one'of

the models has been presented. The list structures used in coding the al-

gorithm have been discussed. Some experimental results obtained by run-

ning the code on a CDC 6600 have been presented.

The model has two possible drawbacks. Firstly, it is hard to accurate-

ly estimate the maximum execution times of tasks. Secondly, an accurate des-

cription of a program may require that the program graph have a very large numb-

er of nodes. The second drawback is vitiated since the algorithm is efficient

and does not require much storage or processing time to analyze large graphs.

As in many modeling problems these days, the major "cost" of using

the model is the time required to obtain data and estimates rather than the

time required to run the algorithm on a computer. Improvements should pri-

marily be concerned with models using less data and fewer estimates.

-84-

Figure 7

Example I

I

/J^-M-Tj

BREAKPOINT

The gij (r) function is marked by
diagonally hatched lines.diagonally hatched lines.

Example II

._.Sij + f (L..ij + Tj)

J (r+T)

3 1

r

fj (r+Tj)

ICSij + f. CL.. + T)13 3 1J

M-T. rj
BREAKPOINT

Store the system environment immediately after

task i is complete and if task j is called next

if and only if r >BREAKPOINT, where r is the

recovery time when task i is complete.

I
__t

-X @~~

.,, P .. ,, .~~~~a,,

II'. . , , /
I.I

I

I
I
I
I
I
I
I

-.L-

-85-

Figure 8

Computing fl(r) Given g12(r) and gl3(r)

W /I-/-//! f;,'(i.,

eg 13 (r)

, ! / ; / / } / .. ,

I _ I N
g

1 2 %rJ

_J

r D
f (r) is shown in hatched lines.
1

-r / l ,' ' 7

i

-86-

Figure 9

T2=

L 2S =324
=

, S24 =

T4= 5

T1 = 10

L12= 1, S12= 1

23= 3, S23
=

3

T = 10~~~3

L34= 1, S34= 2

L45 = 2, S45= 2

T5=10

Successor

Task
Number

2
3
4
4
5

Predece s sor

Task
Number

1
2
2
3
4

Load
Time

1
3
2
1.
2

Table 1

{The number of rows
in the table.

{= The number of edges
in the graph.

Save
Time

1
3
3
2
2

-87-

NODE LIST

Count

Cell No. 1 ---- 1
Cell No. 2 2--
Cell No. 3---------1
Cell No. 4----1
Cell No. 5 --------- 0

Top

0
1
2
4
5

Table 2

EDGE LIST

Bottom

1
3
4
5
0

Predecessor
Node

Cell No. 1 ------ 1
Cell No. 2----- 2
Cell No. 3------2
Cell No. 4------3
Cell No. 5-------4

Predecessor Successor
Link Node

0
0
0
3
O0

2
3
4
4
5

Successor Load Save --., Glink
Link '- Time Timie ----

0
0
2
0
0

1 1 0
3 3 0
2 3 0
1 2 0
2 2 0

Table 3

Time

10
5

10
5

10

Flink

0
0
0
0
0

-88-

Figure 10

Dis continuities

0 2 6 10 r

X Y XYLINK X Y XYLINK

Y (ordinate) of
discontinuity

POINTER to
start of
LIST

X Y XYLINK

2L2 104I

FUNCTION LIST

Cell Number 1
Cell Number 2
Cell Number 3
Cell Number 4

X Y XYLINK
2 1 3
1 1 0
6 2 4

10 4 0

4-J

0
0
so

4

2

1

X (abcissa) of

discontinuity 10

i
I

2 6

I

-89-

TABLE 4

PROBLEM NUMBER -

NUMBER OF NODES:

NUMBER OF EDGES:

EXECUTION TIME
IN SECONDS

PROBLEM NUMBER:

NUMBER OF NODES

NUMBER OF EDGES

EXECUTION TIME
IN SECONDS

PROBLEM NUMBER:

NUMBER OF NODES:

NUMBER OF EDGES:

EXECUTION TIME IN:
SECONDS

lt z 3 4 5 b / 8 W 1-

220 225 176 200 230 233 182 188 222 244

429 419 318 397 469 446 361 37(434 447

.099 .087 .068 .093 .104 .0951.076 .081.095 .098

11 12 13 14 15 16 17 18 19 20

223 201 192 226 212 217 200 216 192 230

429 388 382 458 410 424 380 417 377 434

,o098 .087 .086 .096 .093 .096 .077 .09 .086 .098

21 22 23 24 25 26 27 28 29 30

220 206 161 229 217 215 192 254 175 179

456 400 302 449 431 421 3161 480 350 325

.102 .078 .067 .105 .103 .08E .084 .110 .083 .073

-90-

REFERENCES

1. G. Oppenheimer, K. P. Clancy. Considerations of software protection
and recovery from hardware failures. Proc. FJCC 1968.

2. A. N. Higgins. Error recovery through programming. Proc. FJCC 1968.

3. R. E. Bellman, S. E. Dreyfus. Applied dynamic programming.
Princeton University Press 1962.

4. J. Von Neumann. Probabilistic logics and the synthesis of reliable organisms
from unreliable components.

Automata Studies, Annals of math. studies no. 34. (C. E. Shannon and
J. McCarthy eds.)
Princeton University Press 1956.

5. J. Martin. Design of real-time computer systems. Prentice-Hall
Englewood Cliffs N. J. 1967.

6. A. Cowan. Software and hardware reliability. Forthcoming M. S. thesis
in computer sciences at the University of Texas at Austin.

7. WV. H. Pierce. Failure tolerant computer design. Academic Press, New York
1965.

8. F. P. Matur, A. Avizienis. Reliability analysis of a hybrid-redundant digital
system: Generalized triple modular redundancy with self-repair.
Proc. SJCC 1970.

9. D. N. Freeman. A storage-hierarchy system for batch-processing.
Proc. SJCC 1968.

10. C. V. Ramamoorthy. A structural theory of machine diagnosis.
Proc. SJCC 1967.

11. C. V. Ramamoorthy, K. M. Chandy, M. J. Gonzalez. Optimal Scheduling Strate-
gies in a Multiprocessor System. To appear in IEEE Trans. on EC.

12. E. C. Russell, G. Estrin. Measurement based automatic analysis of FORTRAN
programs. Proc. SJCC 1969.

13. B. Beizer. Analytical techniques for the statistical evaluation of program
running time. Proc. FJCC 1970.

14. R. C. Daley, P. G. Neumann. A general purpose file system for secondary
storage. Proc. FJCC 1965.

